Predicting query performance using query, result, and user interaction features

Qi Guo, Ryen W. White, S. Dumais, Jue Wang, Blake Anderson
{"title":"Predicting query performance using query, result, and user interaction features","authors":"Qi Guo, Ryen W. White, S. Dumais, Jue Wang, Blake Anderson","doi":"10.5555/1937055.1937104","DOIUrl":null,"url":null,"abstract":"The high cost of search engine evaluation makes techniques for accurately predicting engine effectiveness valuable. In this paper we present a study in which we use features of the query, search results, and user interaction with the search results to predict query performance. We establish which features are most useful, study the effect of different classes of features, and examine the effect of query frequency on our predictions. Our findings show that performance predictions using result and interaction features are substantially better than those obtained using only query features. Such results can support automated search engine evaluation methods and new query processing capabilities.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

The high cost of search engine evaluation makes techniques for accurately predicting engine effectiveness valuable. In this paper we present a study in which we use features of the query, search results, and user interaction with the search results to predict query performance. We establish which features are most useful, study the effect of different classes of features, and examine the effect of query frequency on our predictions. Our findings show that performance predictions using result and interaction features are substantially better than those obtained using only query features. Such results can support automated search engine evaluation methods and new query processing capabilities.
使用查询、结果和用户交互特性预测查询性能
搜索引擎评估的高成本使得准确预测引擎有效性的技术很有价值。在本文中,我们提出了一项研究,其中我们使用查询,搜索结果和用户与搜索结果的交互的特征来预测查询性能。我们确定哪些特征是最有用的,研究不同类别的特征的影响,并检查查询频率对我们预测的影响。我们的研究结果表明,使用结果和交互特征的性能预测比仅使用查询特征的性能预测要好得多。这样的结果可以支持自动搜索引擎评估方法和新的查询处理功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信