Hyperspectral Imaging for Vehicle Traction Effort Prediction: ISEAUTO case study

Daniil Valme, A. Rassõlkin, Dhanushka Chamara Liyanage
{"title":"Hyperspectral Imaging for Vehicle Traction Effort Prediction: ISEAUTO case study","authors":"Daniil Valme, A. Rassõlkin, Dhanushka Chamara Liyanage","doi":"10.1109/CPE-POWERENG58103.2023.10227463","DOIUrl":null,"url":null,"abstract":"Modern self-driving platforms require new solutions for the more complex scene understanding to develop the driving assistance systems further. This paper presents a new approach for the vehicle traction effort calculation based on the information obtained from a hyperspectral camera. In this case study, the scenarios for different road surfaces are considered to predict the road load affecting the (ISEAUTO) self-driving electric vehicle (EV) designed at Tallinn University of Technology (TalTech). The collected dataset contains the hyperspectral images acquired mainly in the urban environment of the vehicle pathway. Combining the knowledge of the platform parameters and information regarding the road surface material derived from hyperspectral images using a deep learning technique provides a new layer of data that may be used in more accurate and safe vehicle control.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern self-driving platforms require new solutions for the more complex scene understanding to develop the driving assistance systems further. This paper presents a new approach for the vehicle traction effort calculation based on the information obtained from a hyperspectral camera. In this case study, the scenarios for different road surfaces are considered to predict the road load affecting the (ISEAUTO) self-driving electric vehicle (EV) designed at Tallinn University of Technology (TalTech). The collected dataset contains the hyperspectral images acquired mainly in the urban environment of the vehicle pathway. Combining the knowledge of the platform parameters and information regarding the road surface material derived from hyperspectral images using a deep learning technique provides a new layer of data that may be used in more accurate and safe vehicle control.
用于车辆牵引力预测的高光谱成像:ISEAUTO案例研究
现代自动驾驶平台需要新的解决方案来理解更复杂的场景,以进一步发展驾驶辅助系统。本文提出了一种基于高光谱相机信息计算车辆牵引力的新方法。在本案例研究中,考虑了不同路面的场景,以预测道路载荷对塔林理工大学(TalTech)设计的(ISEAUTO)自动驾驶电动汽车(EV)的影响。所收集的数据集包含主要在车辆路径的城市环境中获取的高光谱图像。利用深度学习技术,将平台参数和路面材料相关的高光谱图像信息相结合,提供了一个新的数据层,可用于更准确、更安全的车辆控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信