{"title":"Junta distance approximation with sub-exponential queries","authors":"Vishnu Iyer, Avishay Tal, Michael Whitmeyer","doi":"10.4230/LIPIcs.CCC.2021.24","DOIUrl":null,"url":null,"abstract":"Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}: 1. We give a [EQUATION] query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k'-juntas, where [EQUATION]. 2. In the non-relaxed setting, we extend our ideas to give a [EQUATION] (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of \"normalized influences\" that was introduced by Talagrand [32].","PeriodicalId":336911,"journal":{"name":"Proceedings of the 36th Computational Complexity Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th Computational Complexity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2021.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f : {±1}n → {±1}: 1. We give a [EQUATION] query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k'-juntas, where [EQUATION]. 2. In the non-relaxed setting, we extend our ideas to give a [EQUATION] (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ + ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of "normalized influences" that was introduced by Talagrand [32].