Ho Hoang Hung, Sourav S Bhowmick, Ba Quan Truong, Byron Choi, Shuigeng Zhou
{"title":"QUBLE","authors":"Ho Hoang Hung, Sourav S Bhowmick, Ba Quan Truong, Byron Choi, Shuigeng Zhou","doi":"10.1145/2463676.2463681","DOIUrl":null,"url":null,"abstract":"In a previous paper, we laid out the vision of a novel graph query processing paradigm where instead of processing a visual query graph after its construction, it interleaves visual query formulation and processing by exploiting the latency offered by the GUI [4]. Our recent attempts at implementing this vision [4,6], show significant improvement in the system response time (SRT) for subgraph queries. However, these efforts are designed specifically for graph databases containing a large collection of small or medium-sized graphs. Consequently, its frequent fragment-based action-aware indexing schemes and query processing strategy are unsuitable for supporting subgraph queries on large networks containing thousands of nodes and edges. In this demonstration, we present a novel system called QUBLE (QUery Blender for Large nEtworks) to realize this novel paradigm on large networks. We demonstrate various innovative features of QUBLE and its promising performance.","PeriodicalId":121471,"journal":{"name":"Proceedings of the 2013 international conference on Management of data - SIGMOD '13","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 international conference on Management of data - SIGMOD '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463676.2463681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In a previous paper, we laid out the vision of a novel graph query processing paradigm where instead of processing a visual query graph after its construction, it interleaves visual query formulation and processing by exploiting the latency offered by the GUI [4]. Our recent attempts at implementing this vision [4,6], show significant improvement in the system response time (SRT) for subgraph queries. However, these efforts are designed specifically for graph databases containing a large collection of small or medium-sized graphs. Consequently, its frequent fragment-based action-aware indexing schemes and query processing strategy are unsuitable for supporting subgraph queries on large networks containing thousands of nodes and edges. In this demonstration, we present a novel system called QUBLE (QUery Blender for Large nEtworks) to realize this novel paradigm on large networks. We demonstrate various innovative features of QUBLE and its promising performance.