A product integration rule for hypersingular integrals on (0,+∞)

M. C. D. Bonis, D. Occorsio
{"title":"A product integration rule for hypersingular integrals on (0,+∞)","authors":"M. C. D. Bonis, D. Occorsio","doi":"10.1553/ETNA_VOL50S129","DOIUrl":null,"url":null,"abstract":"In the present paper we propose a product integration rule for hypersingular integrals on the positive semi-axis. The rule is based on an approximation of the density function f by a suitable truncated Lagrange polynomial. We discuss theoretical aspects by proving stability and convergence of the procedure for density functions f belonging to weighted uniform spaces. Moreover, we give some computational details for the effective construction of the rule coefficients. For the sake of completeness, we present some numerical tests that support the theoretical estimates and some comparisons with other numerical methods.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL50S129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present paper we propose a product integration rule for hypersingular integrals on the positive semi-axis. The rule is based on an approximation of the density function f by a suitable truncated Lagrange polynomial. We discuss theoretical aspects by proving stability and convergence of the procedure for density functions f belonging to weighted uniform spaces. Moreover, we give some computational details for the effective construction of the rule coefficients. For the sake of completeness, we present some numerical tests that support the theoretical estimates and some comparisons with other numerical methods.
(0,+∞)上超奇异积分的积积分规则
本文提出了正半轴上超奇异积分的积积分规则。该规则是基于密度函数f的一个适当的截断拉格朗日多项式的近似。我们通过证明属于加权均匀空间的密度函数f的过程的稳定性和收敛性来讨论理论方面的问题。此外,我们还给出了规则系数有效构造的计算细节。为了完整起见,我们给出了一些支持理论估计的数值试验,并与其他数值方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信