A Goal-Driven Attribute Selection Method for Recommendation Systems

Ching-Jung Lee, Alan Liu, Po-Hsuan Lu, Power Wu
{"title":"A Goal-Driven Attribute Selection Method for Recommendation Systems","authors":"Ching-Jung Lee, Alan Liu, Po-Hsuan Lu, Power Wu","doi":"10.1109/ICS.2016.0118","DOIUrl":null,"url":null,"abstract":"This paper reports a requirements engineering approach to attribute selection for enhancing the results of a recommendation system. A recommendation system suffers the sparsity problem and the cold start problem with collaborative filtering which are caused by the lack of data. Our method is to introduce more timely information of user preferences to enhance the recommendation results that meet the current needs of a user. The proposed method uses a goal-driven approach with the support of the Analytic Hierarchy Process in attribute selection. The experiments show that this method derives promising results.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports a requirements engineering approach to attribute selection for enhancing the results of a recommendation system. A recommendation system suffers the sparsity problem and the cold start problem with collaborative filtering which are caused by the lack of data. Our method is to introduce more timely information of user preferences to enhance the recommendation results that meet the current needs of a user. The proposed method uses a goal-driven approach with the support of the Analytic Hierarchy Process in attribute selection. The experiments show that this method derives promising results.
推荐系统的目标驱动属性选择方法
本文提出了一种需求工程方法来进行属性选择,以提高推荐系统的结果。推荐系统在进行协同过滤时,由于缺乏数据而存在稀疏性问题和冷启动问题。我们的方法是引入更多及时的用户偏好信息,以增强满足用户当前需求的推荐结果。该方法采用目标驱动的方法,并在属性选择中支持层次分析法。实验表明,该方法取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信