M. Takamiya, K. Miyazaki, H. Obara, T. Sai, K. Wada, T. Sakurai
{"title":"Power electronics 2.0: IoT-connected and Al-controlled power electronics operating optimally for each user","authors":"M. Takamiya, K. Miyazaki, H. Obara, T. Sai, K. Wada, T. Sakurai","doi":"10.23919/ISPSD.2017.7988875","DOIUrl":null,"url":null,"abstract":"The emerging trend of internet of things (IoT) and artificial intelligence (AI) technologies will bring about a major change in power electronics and create a new generation of the power electronics (Power Electronics 2.0). To enable the IoT- and Al-assisted Power Electronics 2.0, the integration of the sensors, the programmable hardware, and VLSIs for the controller into the power devices/modules is very important. In this paper, a 6-bit programmable gate driver IC with automatic optimization of gate driving waveform for IGBT is presented as the first step toward Power Electronics 2.0. In the proposed gate driver, the 6-bit gate control signals with four 160-ns time steps are globally optimized using a simulated annealing algorithm, reducing the collector current overshoot by 37% and the switching loss by 47% at the double pulse test of 300V, 50A IGBT. The gate driver is also applied to a half-bridge inverter, where the gate driving waveform is changed depending on the load current.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The emerging trend of internet of things (IoT) and artificial intelligence (AI) technologies will bring about a major change in power electronics and create a new generation of the power electronics (Power Electronics 2.0). To enable the IoT- and Al-assisted Power Electronics 2.0, the integration of the sensors, the programmable hardware, and VLSIs for the controller into the power devices/modules is very important. In this paper, a 6-bit programmable gate driver IC with automatic optimization of gate driving waveform for IGBT is presented as the first step toward Power Electronics 2.0. In the proposed gate driver, the 6-bit gate control signals with four 160-ns time steps are globally optimized using a simulated annealing algorithm, reducing the collector current overshoot by 37% and the switching loss by 47% at the double pulse test of 300V, 50A IGBT. The gate driver is also applied to a half-bridge inverter, where the gate driving waveform is changed depending on the load current.