Methods of traffic data collection, using aerial video

A. Angel, M. Hickman, P. Mirchandani, Dinesh Chandnani
{"title":"Methods of traffic data collection, using aerial video","authors":"A. Angel, M. Hickman, P. Mirchandani, Dinesh Chandnani","doi":"10.1109/ITSC.2002.1041184","DOIUrl":null,"url":null,"abstract":"A limitation of most traditional methods of traffic data collection is that they rely on techniques that are strictly local in nature. Aerial imagery sensors can provide sufficient resolution to sense vehicle locations and movements across broader spatial and temporal scales. Digital video, Global Positioning Systems (GPS), and automated image processing are used to improve the spatial coverage, accuracy and cost-effectiveness of the data collection and reduction. In the paper, a general technique for collecting and analyzing aerial video data is given. To illustrate the value of these data, the paper outlines methods to generate estimates of speeds, travel times, densities, and queuing delays.","PeriodicalId":365722,"journal":{"name":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2002.1041184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

A limitation of most traditional methods of traffic data collection is that they rely on techniques that are strictly local in nature. Aerial imagery sensors can provide sufficient resolution to sense vehicle locations and movements across broader spatial and temporal scales. Digital video, Global Positioning Systems (GPS), and automated image processing are used to improve the spatial coverage, accuracy and cost-effectiveness of the data collection and reduction. In the paper, a general technique for collecting and analyzing aerial video data is given. To illustrate the value of these data, the paper outlines methods to generate estimates of speeds, travel times, densities, and queuing delays.
交通数据采集方法,采用航拍录像
大多数传统的交通数据收集方法的一个局限性是,它们依赖于严格的局部技术。航空图像传感器可以提供足够的分辨率,在更广泛的空间和时间尺度上感知车辆的位置和运动。使用数字视频、全球定位系统(GPS)和自动图像处理来提高数据收集和减少的空间覆盖、准确性和成本效益。本文给出了航空视频数据采集和分析的一般技术。为了说明这些数据的价值,本文概述了生成速度、旅行时间、密度和排队延迟估计的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信