Visual Search and Recognition for Robot Task Execution and Monitoring

L. Mauro, Francesco Puja, S. Grazioso, Valsamis Ntouskos, Marta Sanzari, Edoardo Alati, L. Freda, F. Pirri
{"title":"Visual Search and Recognition for Robot Task Execution and Monitoring","authors":"L. Mauro, Francesco Puja, S. Grazioso, Valsamis Ntouskos, Marta Sanzari, Edoardo Alati, L. Freda, F. Pirri","doi":"10.3233/978-1-61499-929-4-94","DOIUrl":null,"url":null,"abstract":"Visual search of relevant targets in the environment is a crucial robot skill. We propose a preliminary framework for the execution monitor of a robot task, taking care of the robot attitude to visually searching the environment for targets involved in the task. Visual search is also relevant to recover from a failure. The framework exploits deep reinforcement learning to acquire a \"common sense\" scene structure and it takes advantage of a deep convolutional network to detect objects and relevant relations holding between them. The framework builds on these methods to introduce a vision-based execution monitoring, which uses classical planning as a backbone for task execution. Experiments show that with the proposed vision-based execution monitor the robot can complete simple tasks and can recover from failures in autonomy.","PeriodicalId":276901,"journal":{"name":"Applications of Intelligent Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-61499-929-4-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Visual search of relevant targets in the environment is a crucial robot skill. We propose a preliminary framework for the execution monitor of a robot task, taking care of the robot attitude to visually searching the environment for targets involved in the task. Visual search is also relevant to recover from a failure. The framework exploits deep reinforcement learning to acquire a "common sense" scene structure and it takes advantage of a deep convolutional network to detect objects and relevant relations holding between them. The framework builds on these methods to introduce a vision-based execution monitoring, which uses classical planning as a backbone for task execution. Experiments show that with the proposed vision-based execution monitor the robot can complete simple tasks and can recover from failures in autonomy.
机器人任务执行与监控的视觉搜索与识别
对环境中相关目标的视觉搜索是机器人的一项关键技能。我们提出了一个机器人任务执行监控的初步框架,考虑到机器人的姿态,以视觉方式搜索环境中涉及任务的目标。视觉搜索也与从故障中恢复相关。该框架利用深度强化学习来获取“常识”场景结构,并利用深度卷积网络来检测物体及其之间的相关关系。该框架建立在这些方法的基础上,引入了基于视觉的执行监控,它使用经典规划作为任务执行的骨干。实验表明,采用基于视觉的执行监控,机器人可以完成简单的任务,并且可以从故障中自动恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信