Phase Retrieval Using Ayers/Dainty Deconvolution

J. H. Seldin, J. Fienup
{"title":"Phase Retrieval Using Ayers/Dainty Deconvolution","authors":"J. H. Seldin, J. Fienup","doi":"10.1364/srs.1989.fa3","DOIUrl":null,"url":null,"abstract":"An iterative algorithm developed by Ayers and Dainty [1] for the blind deconvolution of two functions is applied to the problem of phase retrieval. Because its structure closely resembles that of the Error Reduction (ER) algorithm commonly used for phase retrieval [2-4], the performance of the Ayers/Dainty (AD) algorithm is compared with that of ER. Both of these algorithms are compared to the faster hybrid input-output (HIO) algorithm [2-4] for the cases of real, nonnegative objects with known and unknown support using Fourier intensity data with different levels of additive Gaussian noise.","PeriodicalId":193110,"journal":{"name":"Signal Recovery and Synthesis III","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1989.fa3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An iterative algorithm developed by Ayers and Dainty [1] for the blind deconvolution of two functions is applied to the problem of phase retrieval. Because its structure closely resembles that of the Error Reduction (ER) algorithm commonly used for phase retrieval [2-4], the performance of the Ayers/Dainty (AD) algorithm is compared with that of ER. Both of these algorithms are compared to the faster hybrid input-output (HIO) algorithm [2-4] for the cases of real, nonnegative objects with known and unknown support using Fourier intensity data with different levels of additive Gaussian noise.
基于分层/精细反卷积的相位检索
将Ayers和Dainty[1]为两个函数的盲反卷积而开发的迭代算法应用于相位恢复问题。由于其结构与相位检索常用的Error Reduction (ER)算法非常相似[2-4],因此将Ayers/Dainty (AD)算法的性能与ER进行比较。这两种算法都与更快的混合输入输出(HIO)算法[2-4]进行了比较,用于使用具有不同水平加性高斯噪声的傅里叶强度数据,具有已知和未知支持的真实非负对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信