Extracting Addresses from Unstructured Text Using Bi-directional Recurrent Neural Networks

Shivin Srivastava
{"title":"Extracting Addresses from Unstructured Text Using Bi-directional Recurrent Neural Networks","authors":"Shivin Srivastava","doi":"10.1109/ICDMW.2018.00223","DOIUrl":null,"url":null,"abstract":"Addresses can be classified as unstructured text because they lack meta-information to be directly indexed in databases. Still they demonstrate an internal structure which can used to automatically extract them using machine learning techniques. In this work we describe a machine learning approach to identify addresses in unstructured text (like blogs) using Bidirectional Recurrent Neural Networks (BRNNs). We overcome the problem of lack of training data by generating synthetic free text entries and come up with problem specific features. Our system does not impose any strict condition on the structure or style of addresses leading to many applications in real life.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Addresses can be classified as unstructured text because they lack meta-information to be directly indexed in databases. Still they demonstrate an internal structure which can used to automatically extract them using machine learning techniques. In this work we describe a machine learning approach to identify addresses in unstructured text (like blogs) using Bidirectional Recurrent Neural Networks (BRNNs). We overcome the problem of lack of training data by generating synthetic free text entries and come up with problem specific features. Our system does not impose any strict condition on the structure or style of addresses leading to many applications in real life.
利用双向递归神经网络从非结构化文本中提取地址
地址可以被归类为非结构化文本,因为它们缺乏在数据库中直接索引的元信息。然而,它们展示了一种内部结构,可以使用机器学习技术自动提取它们。在这项工作中,我们描述了一种机器学习方法,使用双向循环神经网络(BRNNs)来识别非结构化文本(如博客)中的地址。我们通过生成合成的自由文本条目来克服缺乏训练数据的问题,并提出特定于问题的特征。我们的系统对地址的结构和风格没有任何严格的限制,因此在现实生活中有很多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信