Solusi Persamaan Schrodinger dengan Menggunakan Metode Transformasi Diferensial

Muhammad Abdy, Hisyam Ihsan, Dhea Ayu Rossyana Dewi
{"title":"Solusi Persamaan Schrodinger dengan Menggunakan Metode Transformasi Diferensial","authors":"Muhammad Abdy, Hisyam Ihsan, Dhea Ayu Rossyana Dewi","doi":"10.35580/JMATHCOS.V4I1.20449","DOIUrl":null,"url":null,"abstract":"Abstrak. Penelitian ini membahas tentang solusi persamaan diferensial parsial linier yaitu persamaan Schrodinger. Solusi persamaan ini dilakukan dengan menggunakan metode transformasi diferensial yang merupakan metode semi-numerik-analitik yang dapat digunakan untuk menyelesaikan persamaan diferensial biasa ataupun persamaan diferensial parsial linier dan nonlinier. Metode transformasi diferensial merupakan metode yang menggunakan teori ekspansi deret pangkat pada bentuk transformasinya untuk menentukan solusi. Pada penelitian ini digunakan dua nilai awal pada persamaan Schrodinger yang diberikan. Solusi dengan kedua nilai awal yang diberikan diperoleh dengan menggunakan ekspansi deret Maclaurin. Kemudian solusi tersebut disimulasikan menggunakan software Maple18. Akibatnya, metode transformasi diferensial pada penelitian ini merupakan salah satu metode yang mampu menghasilkan solusi untuk persamaan Schrodinger..Kata Kunci: Persamaan Schrodinger, Metode Transformasi DiferensialAbstract. This study discusses the solution of linear partial differential equations, namely Schrodinger equation. The solution of the equation is done by using the differential transformation method which is a semi-numerical-analytical method, it can be used to solve both ordinary differential equations and linear or nonlinear partial differential equations. Differential transformation method is a method uses the theory of rank expansion in the form of transformation to determine solutions. In this study, two initial values in the given Schrodinger equation were used. Solutions with both initial values given are obtained using the Maclaurin series expansion. Then, the solution is simulated using Maple18 software. As a result, the differential transformation method in this study is one method that is able to solve a solution to the Schrodinger equation.Keywords: Schrodinger Equation, Differential Transformation Method","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/JMATHCOS.V4I1.20449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstrak. Penelitian ini membahas tentang solusi persamaan diferensial parsial linier yaitu persamaan Schrodinger. Solusi persamaan ini dilakukan dengan menggunakan metode transformasi diferensial yang merupakan metode semi-numerik-analitik yang dapat digunakan untuk menyelesaikan persamaan diferensial biasa ataupun persamaan diferensial parsial linier dan nonlinier. Metode transformasi diferensial merupakan metode yang menggunakan teori ekspansi deret pangkat pada bentuk transformasinya untuk menentukan solusi. Pada penelitian ini digunakan dua nilai awal pada persamaan Schrodinger yang diberikan. Solusi dengan kedua nilai awal yang diberikan diperoleh dengan menggunakan ekspansi deret Maclaurin. Kemudian solusi tersebut disimulasikan menggunakan software Maple18. Akibatnya, metode transformasi diferensial pada penelitian ini merupakan salah satu metode yang mampu menghasilkan solusi untuk persamaan Schrodinger..Kata Kunci: Persamaan Schrodinger, Metode Transformasi DiferensialAbstract. This study discusses the solution of linear partial differential equations, namely Schrodinger equation. The solution of the equation is done by using the differential transformation method which is a semi-numerical-analytical method, it can be used to solve both ordinary differential equations and linear or nonlinear partial differential equations. Differential transformation method is a method uses the theory of rank expansion in the form of transformation to determine solutions. In this study, two initial values in the given Schrodinger equation were used. Solutions with both initial values given are obtained using the Maclaurin series expansion. Then, the solution is simulated using Maple18 software. As a result, the differential transformation method in this study is one method that is able to solve a solution to the Schrodinger equation.Keywords: Schrodinger Equation, Differential Transformation Method
薛定谔方程与微分变换方法
抽象。本研究探讨了薛定谔方程的部分微分方程。方程解方法是用半微分法来解普通微分方程或部分微分方程。微分转化方法是利用星系线扩展理论来定义变异解决方案的方法。在本研究中,它使用了薛定谔方程的两个初始值。利用马列特麦克劳林的扩张取得了两个初始值的解决方案。然后使用Maple18软件模拟解决方案。结果,这项研究的微分转化方法是能解决薛定谔方程的方法之一。这项研究揭示了线性分区差异方程的解,namely薛定谔方程。方程的解决方案是使用不同的替代方法,这是一种半分析方法,它可以用来解决普通的差异化和非线性的分区差异。不同的转变方法是一种方法,它利用了在变革形式中展开的理论来确定解决方案。在这项研究中,在薛定谔的方程中出现了两项指控。通过麦克劳林系列的介绍,我们获得了两项初步解决方案。然后,解决方案是使用Maple18软件模拟。正如预测的那样,这项研究的不同转变方法是一种可以解决薛定谔方程的方法。薛定谔方程,不同的方法改变
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信