Data-Driven Performance Prediction Using Gas Turbine Sensory Signals

T. Ravichandran, Yuan Liu, Amar Kumar, A. Srivastava, Houman Hanachi, G. Heppler
{"title":"Data-Driven Performance Prediction Using Gas Turbine Sensory Signals","authors":"T. Ravichandran, Yuan Liu, Amar Kumar, A. Srivastava, Houman Hanachi, G. Heppler","doi":"10.1109/CCECE47787.2020.9255821","DOIUrl":null,"url":null,"abstract":"The performance of a gas turbine engine (GTE) deteriorates with degradation and aging. The availability of the operating data from the GTE with the capability to perform data analysis provides an opportunity to identify short-term and longterm performance deterioration and relate to more difficult to detect components degradation. In this work, a data-driven and machine learning-based predictive modeling framework has been developed for performing combined input and model selection towards generating easily interpretable, parsimonious and accurate regression models intended for gas turbine engine performance analysis. The proposed multistage predictive modeling framework incorporates the orthogonal least squares (OLS) learning and multi-criteria decision-making approach for selecting inputs and model structures in a computationally efficient manner while optimizing multiple objectives. The regression models obtained from this framework for predicting power and exhaust gas temperature (EGT) outputs using GTE operational data collected over a period of three years have demonstrated short-term and long-term performance deterioration patterns for the GTE.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The performance of a gas turbine engine (GTE) deteriorates with degradation and aging. The availability of the operating data from the GTE with the capability to perform data analysis provides an opportunity to identify short-term and longterm performance deterioration and relate to more difficult to detect components degradation. In this work, a data-driven and machine learning-based predictive modeling framework has been developed for performing combined input and model selection towards generating easily interpretable, parsimonious and accurate regression models intended for gas turbine engine performance analysis. The proposed multistage predictive modeling framework incorporates the orthogonal least squares (OLS) learning and multi-criteria decision-making approach for selecting inputs and model structures in a computationally efficient manner while optimizing multiple objectives. The regression models obtained from this framework for predicting power and exhaust gas temperature (EGT) outputs using GTE operational data collected over a period of three years have demonstrated short-term and long-term performance deterioration patterns for the GTE.
使用燃气轮机传感信号的数据驱动性能预测
燃气涡轮发动机(GTE)的性能随着退化和老化而恶化。来自GTE的操作数据的可用性以及执行数据分析的能力为识别短期和长期性能恶化提供了机会,并且与更难以检测的组件退化相关。在这项工作中,开发了一个数据驱动和基于机器学习的预测建模框架,用于执行组合输入和模型选择,以生成易于解释、简洁和准确的回归模型,用于燃气轮机发动机性能分析。提出的多阶段预测建模框架结合了正交最小二乘(OLS)学习和多准则决策方法,以高效的计算方式选择输入和模型结构,同时优化多目标。利用三年收集的GTE运行数据,从该框架中获得的预测功率和废气温度(EGT)输出的回归模型显示了GTE的短期和长期性能恶化模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信