Genetic Takagi-Sugeno fuzzy reinforcement learning

X.W. Yan, Z. Deng, Z. Sun
{"title":"Genetic Takagi-Sugeno fuzzy reinforcement learning","authors":"X.W. Yan, Z. Deng, Z. Sun","doi":"10.1109/ISIC.2001.971486","DOIUrl":null,"url":null,"abstract":"This paper presents two fuzzy reinforcement learning methods for solving complicated learning tasks of continuous domains. Takagi-Sugeno fuzzy reinforcement learning (TSFRL) is constructed by combining Takagi-Sugeno type fuzzy inference systems with Q-learning. Next, genetic Takagi-Sugeno fuzzy reinforcement learning (GTSFRL) is introduced by embedding TSFRL into genetic algorithms. Both proposed learning algorithms can also be used to design Takagi-Sugeno fuzzy logic controllers. Experiments on the double inverted pendulum system demonstrate the performance and applicability of the proposed schemes. Finally, the conclusion remark is drawn.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents two fuzzy reinforcement learning methods for solving complicated learning tasks of continuous domains. Takagi-Sugeno fuzzy reinforcement learning (TSFRL) is constructed by combining Takagi-Sugeno type fuzzy inference systems with Q-learning. Next, genetic Takagi-Sugeno fuzzy reinforcement learning (GTSFRL) is introduced by embedding TSFRL into genetic algorithms. Both proposed learning algorithms can also be used to design Takagi-Sugeno fuzzy logic controllers. Experiments on the double inverted pendulum system demonstrate the performance and applicability of the proposed schemes. Finally, the conclusion remark is drawn.
遗传Takagi-Sugeno模糊强化学习
针对连续域的复杂学习任务,提出了两种模糊强化学习方法。Takagi-Sugeno模糊强化学习(TSFRL)是将Takagi-Sugeno型模糊推理系统与Q-learning相结合而构建的。然后,将遗传Takagi-Sugeno模糊强化学习(genetic Takagi-Sugeno fuzzy reinforcement learning, GTSFRL)嵌入到遗传算法中。提出的两种学习算法也可用于设计Takagi-Sugeno模糊逻辑控制器。对双倒立摆系统的实验验证了所提方案的性能和适用性。最后是结束语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信