Mining frequent partial periodic patterns in spectrum usage data

Pei Huang, Chin-Jung Liu, Li Xiao, Jin Chen
{"title":"Mining frequent partial periodic patterns in spectrum usage data","authors":"Pei Huang, Chin-Jung Liu, Li Xiao, Jin Chen","doi":"10.1109/IWQoS.2012.6245969","DOIUrl":null,"url":null,"abstract":"Cognitive radio appears as a promising technology to allocate wireless spectrum between licensed and unlicensed users. Predictive methods for inferring the availability of spectrum holes can help to reduce collision and improve spectrum extraction. This paper introduces a Partial Periodic Pattern Mining (PPPM) algorithm to identify frequent spectrum occupancy patterns that are hidden in the spectrum usage of a channel. The mined frequent patterns are then used to predict future channel states (i.e., busy or idle). PPPM outperforms traditional Frequent Pattern Mining (FPM) by considering real patterns that do not repeat perfectly. Using real life network activities, we show a significant reduction on miss rate in channel state prediction.","PeriodicalId":178333,"journal":{"name":"2012 IEEE 20th International Workshop on Quality of Service","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Workshop on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2012.6245969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cognitive radio appears as a promising technology to allocate wireless spectrum between licensed and unlicensed users. Predictive methods for inferring the availability of spectrum holes can help to reduce collision and improve spectrum extraction. This paper introduces a Partial Periodic Pattern Mining (PPPM) algorithm to identify frequent spectrum occupancy patterns that are hidden in the spectrum usage of a channel. The mined frequent patterns are then used to predict future channel states (i.e., busy or idle). PPPM outperforms traditional Frequent Pattern Mining (FPM) by considering real patterns that do not repeat perfectly. Using real life network activities, we show a significant reduction on miss rate in channel state prediction.
频谱使用数据中频繁部分周期模式的挖掘
认知无线电是一种很有前途的技术,可以在授权用户和未授权用户之间分配无线频谱。利用预测方法推断频谱空穴的可用性有助于减少碰撞,提高频谱提取效率。提出了一种局部周期模式挖掘算法,用于识别隐藏在信道频谱使用中的频繁频谱占用模式。然后使用挖掘的频繁模式来预测未来的通道状态(即繁忙或空闲)。PPPM通过考虑不能完美重复的真实模式而优于传统的频繁模式挖掘(FPM)。使用现实生活中的网络活动,我们显示了在信道状态预测中缺失率的显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信