Effects of prolonged antipsychotic administration on neuregulin-1/ErbB signaling in rat prefrontal cortex and myocardium: implications for the therapeutic action and cardiac adverse effect.

R. Dang, Yujin Guo, H. Cai, Ranyao Yang, Donglou Liang, Chuanfeng Lv, Pei Jiang
{"title":"Effects of prolonged antipsychotic administration on neuregulin-1/ErbB signaling in rat prefrontal cortex and myocardium: implications for the therapeutic action and cardiac adverse effect.","authors":"R. Dang, Yujin Guo, H. Cai, Ranyao Yang, Donglou Liang, Chuanfeng Lv, Pei Jiang","doi":"10.2131/jts.41.303","DOIUrl":null,"url":null,"abstract":"Patients with schizophrenia (SCZ) are at higher risk for developing cardiovascular disease (CVD) and neuregulin-1 (NRG1)/ErbB signaling has been identified as a common susceptibility pathway for the comorbidity. Antipsychotic treatment can change NRG1/ErbB signaling in the brain, which has been implicated in their therapeutic actions, whereas the drug-induced alterations of NRG1/ErbB pathway in cardiovascular system might be associated with the prominent cardiac side-effects of antipsychotic medication. To test this hypothesis, we examined NRG1/ErbB system in rat prefrontal cortex (PFC) and myocardium following 4-week intraperitoneal administration of haloperidol, risperidone or clozapine. Generally, the antipsychotics significantly enhanced NRG1/ErbB signaling with increased expression of NRG1 and phosphorylation of ErbB4 and ErbB2 in the brain and myocardium, except that clozapine partly blocked the cardiac NRG1/ErbB2 activation, which could be associated with its more severe cardiac adverse actions. Combined, our data firstly showed evidence of the effect of antipsychotic exposure on myocardial NRG1/ErbB signaling, along with the activated NRG1/ErbB system in brain, providing a potential link between the therapeutic actions and cardiotoxicity.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of toxicological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2131/jts.41.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Patients with schizophrenia (SCZ) are at higher risk for developing cardiovascular disease (CVD) and neuregulin-1 (NRG1)/ErbB signaling has been identified as a common susceptibility pathway for the comorbidity. Antipsychotic treatment can change NRG1/ErbB signaling in the brain, which has been implicated in their therapeutic actions, whereas the drug-induced alterations of NRG1/ErbB pathway in cardiovascular system might be associated with the prominent cardiac side-effects of antipsychotic medication. To test this hypothesis, we examined NRG1/ErbB system in rat prefrontal cortex (PFC) and myocardium following 4-week intraperitoneal administration of haloperidol, risperidone or clozapine. Generally, the antipsychotics significantly enhanced NRG1/ErbB signaling with increased expression of NRG1 and phosphorylation of ErbB4 and ErbB2 in the brain and myocardium, except that clozapine partly blocked the cardiac NRG1/ErbB2 activation, which could be associated with its more severe cardiac adverse actions. Combined, our data firstly showed evidence of the effect of antipsychotic exposure on myocardial NRG1/ErbB signaling, along with the activated NRG1/ErbB system in brain, providing a potential link between the therapeutic actions and cardiotoxicity.
长期抗精神病药物对大鼠前额皮质和心肌神经调节蛋白-1/ErbB信号传导的影响:对治疗作用和心脏不良反应的影响
精神分裂症(SCZ)患者发生心血管疾病(CVD)的风险较高,神经调节蛋白-1 (NRG1)/ErbB信号传导已被确定为该合并症的常见易感途径。抗精神病药物可改变脑内NRG1/ErbB信号通路,这与抗精神病药物的治疗作用有关,而药物诱导的心血管系统NRG1/ErbB信号通路的改变可能与抗精神病药物显著的心脏副作用有关。为了验证这一假设,我们在大鼠前额叶皮质(PFC)和心肌中腹腔注射氟哌啶醇、利培酮或氯氮平4周后检测了NRG1/ErbB系统。一般来说,抗精神病药物显著增强NRG1/ErbB信号,增加NRG1的表达和ErbB4和ErbB2在脑和心肌中的磷酸化,但氯氮平部分阻断了心脏NRG1/ErbB2的激活,这可能与其更严重的心脏不良反应有关。综上所述,我们的数据首次证明了抗精神病药物暴露对心肌NRG1/ErbB信号的影响,以及大脑中激活的NRG1/ErbB系统,提供了治疗作用与心脏毒性之间的潜在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信