Evidential Evolving Gustafson-Kessel Algorithm (E2GK) and its application to PRONOSTIA's data streams partitioning

Lisa Serir, E. Ramasso, P. Nectoux, Olivier Bauer, N. Zerhouni
{"title":"Evidential Evolving Gustafson-Kessel Algorithm (E2GK) and its application to PRONOSTIA's data streams partitioning","authors":"Lisa Serir, E. Ramasso, P. Nectoux, Olivier Bauer, N. Zerhouni","doi":"10.1109/CDC.2011.6161115","DOIUrl":null,"url":null,"abstract":"Condition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6161115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Condition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications.
证据进化Gustafson-Kessel算法(E2GK)及其在proprostia数据流划分中的应用
基于状态的维修(CBM)是现代维修实践中的一个关键要素。诊断和预后研究是CBM计划的两个重要方面,正在迅速发展,许多研究在研究实验室进行,以开发模型,算法和数据处理技术。在这种情况下,我们提出了一种新的进化聚类算法开发的预后的观点。E2GK (evidence evolutionary Gustafson-Kessel)是一种基于信念函数理论框架的在线聚类方法。该算法基于两种现有的高效算法:evidence c-Means (ECM)和evolutionary Gustafson-Kessel (EGK),实现了数据流的在线分区。为了验证和说明E2GK的结果,我们使用了一个名为PRONOSTIA的原始平台提供的数据集,该平台专门用于预测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信