Lisa Serir, E. Ramasso, P. Nectoux, Olivier Bauer, N. Zerhouni
{"title":"Evidential Evolving Gustafson-Kessel Algorithm (E2GK) and its application to PRONOSTIA's data streams partitioning","authors":"Lisa Serir, E. Ramasso, P. Nectoux, Olivier Bauer, N. Zerhouni","doi":"10.1109/CDC.2011.6161115","DOIUrl":null,"url":null,"abstract":"Condition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6161115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Condition-based maintenance (CBM) appears to be a key element in modern maintenance practice. Research in diagnosis and prognosis, two important aspects of a CBM program, is growing rapidly and many studies are conducted in research laboratories to develop models, algorithms and technologies for data processing. In this context, we present a new evolving clustering algorithm developed for prognostics perspectives. E2GK (Evidential Evolving Gustafson-Kessel) is an online clustering method in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). To validate and illustrate the results of E2GK, we use a dataset provided by an original platform called PRONOSTIA dedicated to prognostics applications.