A Tight Lower Bound for Comparison-Based Quantile Summaries

Graham Cormode, P. Veselý
{"title":"A Tight Lower Bound for Comparison-Based Quantile Summaries","authors":"Graham Cormode, P. Veselý","doi":"10.1145/3375395.3387650","DOIUrl":null,"url":null,"abstract":"Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles of a stream of items, up to an error of at most ε. That is, an ε-approximate quantile summary first processes a stream and then, given any quantile query 0łe φłe 1, returns an item from the stream, which is a φ'-quantile for some φ' = φ +- ε. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna [6], stores at most O(1/ε ⋅ log ε N) items, where N is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)⋅ o(log N), for any function f that does not depend on N. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1+-ε)⋅ φ, and for other related computational tasks.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles of a stream of items, up to an error of at most ε. That is, an ε-approximate quantile summary first processes a stream and then, given any quantile query 0łe φłe 1, returns an item from the stream, which is a φ'-quantile for some φ' = φ +- ε. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna [6], stores at most O(1/ε ⋅ log ε N) items, where N is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)⋅ o(log N), for any function f that does not depend on N. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1+-ε)⋅ φ, and for other related computational tasks.
基于比较的分位数摘要的紧密下界
分位数,如中位数或百分位数,提供了关于从一个完全有序的宇宙中抽取的一组项目的分布的简洁而有用的信息。我们研究数据结构,称为分位数摘要,它跟踪项目流的所有分位数,误差最多为ε。也就是说,一个ε-近似分位数汇总首先处理一个流,然后,给定任何分位数查询0łe φłe 1,从流中返回一个项目,对于某些φ' = φ +- ε,它是一个φ'-分位数。我们关注的是基于比较的分位数摘要,它只能比较两个项目,否则就完全忽略了整个宇宙。由于Greenwald和Khanna[6],迄今为止最好的这种确定性分位数总结最多存储O(1/ε⋅log ε N)个项目,其中N是流中的项目数。我们通过给出一个匹配的下界来证明这个空间界是最优的。因此,我们的结果排除了在空间f(ε)⋅o(log N)中构建基于确定性比较的分位数总结的可能性,对于任何不依赖于N的函数f,作为推论,我们改进了有偏分位数的下界,从而为(1+-ε)⋅φ提供了更强的相对误差保证,并适用于其他相关的计算任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信