Identification method for nonlinear LFR block-oriented models with multiple inputs and outputs

L. Vanbeylen, A. Van Mulders
{"title":"Identification method for nonlinear LFR block-oriented models with multiple inputs and outputs","authors":"L. Vanbeylen, A. Van Mulders","doi":"10.1109/ECC.2014.6862461","DOIUrl":null,"url":null,"abstract":"Recently, the nonlinear LFR model has been proposed as a candidate model with high potential, due to its surprising flexibility and parsimony. It is a quite general block-oriented model consisting of a static nonlinearity (SNL) and multiple-input-multiple-output (MIMO) dynamics. It can cope with both nonlinear feedforward and nonlinear feedback effects and does not postulate the SNL's location prior to the identification. This contribution extends the model from single-input-single-output (SISO) to MIMO. Starting from two classical frequency response measurements of the system, the method delivers the best possible MIMO dynamics and estimates the SNL in an automated, user-friendly, non-iterative way, with an improved computational efficiency. The method is successfully applied on a numerical simulation example to illustrate the theory.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the nonlinear LFR model has been proposed as a candidate model with high potential, due to its surprising flexibility and parsimony. It is a quite general block-oriented model consisting of a static nonlinearity (SNL) and multiple-input-multiple-output (MIMO) dynamics. It can cope with both nonlinear feedforward and nonlinear feedback effects and does not postulate the SNL's location prior to the identification. This contribution extends the model from single-input-single-output (SISO) to MIMO. Starting from two classical frequency response measurements of the system, the method delivers the best possible MIMO dynamics and estimates the SNL in an automated, user-friendly, non-iterative way, with an improved computational efficiency. The method is successfully applied on a numerical simulation example to illustrate the theory.
多输入输出非线性LFR分块模型的识别方法
近年来,非线性LFR模型因其惊人的灵活性和简约性而被提出作为一种极具潜力的候选模型。它是一个由静态非线性(SNL)和多输入多输出(MIMO)动态组成的非常通用的面向块的模型。它可以处理非线性前馈和非线性反馈效应,并且在识别之前不假设SNL的位置。这一贡献将模型从单输入-单输出(SISO)扩展到MIMO。从系统的两个经典频率响应测量开始,该方法提供了最佳的MIMO动态,并以自动化,用户友好,非迭代的方式估计SNL,并提高了计算效率。最后,通过数值模拟实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信