Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, Akira Funahashi, Yuichiro Shibata, H. Yamada, N. Hiroi, H. Kitano, H. Amano
{"title":"Practical implementation of a network-based stochastic biochemical simulation system on an FPGA","authors":"Masato Yoshimi, Yuri Nishikawa, Yasunori Osana, Akira Funahashi, Yuichiro Shibata, H. Yamada, N. Hiroi, H. Kitano, H. Amano","doi":"10.1109/FPL.2008.4630034","DOIUrl":null,"url":null,"abstract":"Stochastic simulation of biochemical reaction networks are widely focused by life scientists to represent stochastic behaviors in cellular processes. Stochastic algorithm has loop-and thread-level parallelism, and it is suitable for running on application specific hardware to achieve high performance with low cost. We have implemented and evaluated the FPGA-based stochastic simulator according to theoretical research of the algorithm. This paper introduces an improved architecture for accelerating a stochastic simulation algorithm called the Next Reaction Method. This new architecture has scalability to various size of FPGA. As the result with a middle-range FPGA, 5.38 times higher throughput was obtained compared to software running on a Core 2 Quad Q6600 2.40 GHz.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Stochastic simulation of biochemical reaction networks are widely focused by life scientists to represent stochastic behaviors in cellular processes. Stochastic algorithm has loop-and thread-level parallelism, and it is suitable for running on application specific hardware to achieve high performance with low cost. We have implemented and evaluated the FPGA-based stochastic simulator according to theoretical research of the algorithm. This paper introduces an improved architecture for accelerating a stochastic simulation algorithm called the Next Reaction Method. This new architecture has scalability to various size of FPGA. As the result with a middle-range FPGA, 5.38 times higher throughput was obtained compared to software running on a Core 2 Quad Q6600 2.40 GHz.