Knowledge base clustering for KBS maintenance

O. Lee, P. Gray
{"title":"Knowledge base clustering for KBS maintenance","authors":"O. Lee, P. Gray","doi":"10.1002/(SICI)1096-908X(199811/12)10:6%3C395::AID-SMR179%3E3.0.CO;2-4","DOIUrl":null,"url":null,"abstract":"Clustering the rules in a knowledge-based system (KBS) on the basis of their static distance (lexical information) reduces the burden of understanding in the mind of the maintainer. This paper explores a clustering algorithm based on the Hopfield neural net algorithm that clusters automatically using lexical similarity. Using that algorithm, this paper presents a tool that can aid the maintainer in maintaining a KBS. The tool is the Rule Base Clusterizer (RBC) which structures the KBS rule base to make it appear easy to understand for the maintainer. This paper shows by using entropy and Miller's number that the RBC finds the best clustering that produces both an adequate amount of information and acceptable sized clusters. The paper also presents three examples of running the RBC on real-world rule bases. © 1998 John Wiley & Sons, Ltd.","PeriodicalId":383619,"journal":{"name":"J. Softw. Maintenance Res. Pract.","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Softw. Maintenance Res. Pract.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1096-908X(199811/12)10:6%3C395::AID-SMR179%3E3.0.CO;2-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Clustering the rules in a knowledge-based system (KBS) on the basis of their static distance (lexical information) reduces the burden of understanding in the mind of the maintainer. This paper explores a clustering algorithm based on the Hopfield neural net algorithm that clusters automatically using lexical similarity. Using that algorithm, this paper presents a tool that can aid the maintainer in maintaining a KBS. The tool is the Rule Base Clusterizer (RBC) which structures the KBS rule base to make it appear easy to understand for the maintainer. This paper shows by using entropy and Miller's number that the RBC finds the best clustering that produces both an adequate amount of information and acceptable sized clusters. The paper also presents three examples of running the RBC on real-world rule bases. © 1998 John Wiley & Sons, Ltd.
知识库聚类的KBS维护
基于静态距离(词汇信息)对知识系统(KBS)中的规则进行聚类,可以减少维护人员的理解负担。本文研究了一种基于Hopfield神经网络算法的聚类算法,该算法利用词汇相似度自动聚类。利用该算法,本文提出了一种工具,可以帮助维护人员维护KBS。该工具是Rule Base Clusterizer (RBC),它构建KBS规则库,使其易于维护人员理解。本文通过使用熵和米勒数表明,RBC找到了产生足够信息量和可接受大小的簇的最佳聚类。本文还介绍了在现实世界的规则基础上运行RBC的三个示例。©1998 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信