Rice Semantic Segmentation Using Unet-VGG16: A Case Study in Yunlin, Taiwan

Ida Wahyuni, Wei-Jen Wang, Deron Liang, Chin-Chun Chang
{"title":"Rice Semantic Segmentation Using Unet-VGG16: A Case Study in Yunlin, Taiwan","authors":"Ida Wahyuni, Wei-Jen Wang, Deron Liang, Chin-Chun Chang","doi":"10.1109/ISPACS51563.2021.9651038","DOIUrl":null,"url":null,"abstract":"In this paper, Unet-VGG16 semantic segmentation network is proposed to segment rice regions in the aerial images of Yunlin, Taiwan. The experimental results show that different combinations of image bands and different image conditions affect the segmentation accuracy. With R-G-NIR bands as input and bright aerial images as the dataset, the Unet-VGG16 network yielded the best segmentation result, achieving a test accuracy of 0.91.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, Unet-VGG16 semantic segmentation network is proposed to segment rice regions in the aerial images of Yunlin, Taiwan. The experimental results show that different combinations of image bands and different image conditions affect the segmentation accuracy. With R-G-NIR bands as input and bright aerial images as the dataset, the Unet-VGG16 network yielded the best segmentation result, achieving a test accuracy of 0.91.
基于Unet-VGG16的水稻语义分割:以台湾云林为例
本文提出Unet-VGG16语义分割网络,对台湾云林地区航空影像中的水稻区域进行分割。实验结果表明,不同的图像波段组合和不同的图像条件会影响分割精度。以R-G-NIR波段为输入,以明亮航拍图像为数据集,Unet-VGG16网络分割效果最好,测试精度为0.91。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信