{"title":"A note on a category composition","authors":"N. Uglešić","doi":"10.32817/ams.2.3","DOIUrl":null,"url":null,"abstract":"The special properties of an abstract category morphism (for instance, being an identity, an isomorphism, an epimorphism., a monomorphism . . . ) fully depend on the category composition. Consequently, an isomorphic category to a concrete category may be not concrete, i.e., the concreteness is not a category invariant. Further, every small category is isomorphic to a small category whose objects are sets and whose morphisms are functions between those sets.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/ams.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The special properties of an abstract category morphism (for instance, being an identity, an isomorphism, an epimorphism., a monomorphism . . . ) fully depend on the category composition. Consequently, an isomorphic category to a concrete category may be not concrete, i.e., the concreteness is not a category invariant. Further, every small category is isomorphic to a small category whose objects are sets and whose morphisms are functions between those sets.