{"title":"Props Alive: A Framework for Augmented Reality Stop Motion Animation","authors":"Llogari Casas, Maggie Kosek, Kenny Mitchell","doi":"10.1109/SEARIS41720.2017.9183487","DOIUrl":null,"url":null,"abstract":"Stop motion animation evolved in the early days of cinema with the aim to create an illusion of movement with static puppets posed manually each frame. Current stop motion movies introduced 3D printing processes in order to acquire animations more accurately and rapidly. However, due to the nature of this technique, every frame needs to be computer-generated, 3D printed and post-processed before it can be recorded. Therefore, a typical stop motion film could require many thousands of props to be created, resulting in a laborious and expensive production. We address this with a real-time interactive Augmented Reality system which generates virtual in-between poses according to a reduced number of key frame physical props. We perform deformation of the surface camera samples to accomplish smooth animations with retained visual appearance and incorporate a diminished reality method to allow virtual deformations that would, otherwise, reveal undesired background behind the animated mesh.Underpinning this solution is a principled interaction and system design which forms our Props Alive framework. We apply established models of interactive system design, drawing from an information visualisation framework which, appropriately for Augmented Reality, includes consideration of the user, interaction, data and presentation elements necessary for real-time. The rapid development framework and high performance architecture is detailed with an analysis of resulting performance.","PeriodicalId":141532,"journal":{"name":"2017 IEEE 10th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 10th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEARIS41720.2017.9183487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Stop motion animation evolved in the early days of cinema with the aim to create an illusion of movement with static puppets posed manually each frame. Current stop motion movies introduced 3D printing processes in order to acquire animations more accurately and rapidly. However, due to the nature of this technique, every frame needs to be computer-generated, 3D printed and post-processed before it can be recorded. Therefore, a typical stop motion film could require many thousands of props to be created, resulting in a laborious and expensive production. We address this with a real-time interactive Augmented Reality system which generates virtual in-between poses according to a reduced number of key frame physical props. We perform deformation of the surface camera samples to accomplish smooth animations with retained visual appearance and incorporate a diminished reality method to allow virtual deformations that would, otherwise, reveal undesired background behind the animated mesh.Underpinning this solution is a principled interaction and system design which forms our Props Alive framework. We apply established models of interactive system design, drawing from an information visualisation framework which, appropriately for Augmented Reality, includes consideration of the user, interaction, data and presentation elements necessary for real-time. The rapid development framework and high performance architecture is detailed with an analysis of resulting performance.