General Depression Detection Analysis Using IndoBERT Method

Ilham Rizki Hidayat, W. Maharani
{"title":"General Depression Detection Analysis Using IndoBERT Method","authors":"Ilham Rizki Hidayat, W. Maharani","doi":"10.21108/ijoict.v8i1.634","DOIUrl":null,"url":null,"abstract":"Many of the tweets we discover on Twitter are concerning feelings of depression which will be caused by varied things. The amount of tweets additionally continues to increase. To be able to decide however depressed a user is, analysing tweets from users can facilitate with that. The method of analysing the detection of depression can help to supply applicable treatment for users who are detected to own depression. During this paper, the users to be analysed are users who have more than 1000 tweets and are Indonesian tweets. Then, crawling / retrieval of user tweet data is carried out. After that, data pre-processing is done. Once that done, using the IndoBERT method to classify the data obtained. In the end, this paper provides the accuracy value of this detection analysis using the IndoBERT method with an accuracy value of 51% and F1-Score of 31%.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v8i1.634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many of the tweets we discover on Twitter are concerning feelings of depression which will be caused by varied things. The amount of tweets additionally continues to increase. To be able to decide however depressed a user is, analysing tweets from users can facilitate with that. The method of analysing the detection of depression can help to supply applicable treatment for users who are detected to own depression. During this paper, the users to be analysed are users who have more than 1000 tweets and are Indonesian tweets. Then, crawling / retrieval of user tweet data is carried out. After that, data pre-processing is done. Once that done, using the IndoBERT method to classify the data obtained. In the end, this paper provides the accuracy value of this detection analysis using the IndoBERT method with an accuracy value of 51% and F1-Score of 31%.
用IndoBERT方法进行一般抑郁检测分析
我们在推特上发现的许多推文都是关于由各种各样的事情引起的抑郁情绪。此外,推文的数量还在继续增加。为了判断用户有多沮丧,分析用户的推文可以帮助判断。分析抑郁症的检测方法有助于为被检测出患有抑郁症的用户提供适用的治疗方法。在本文中,要分析的用户是推文超过1000条的用户,并且是印度尼西亚的推文。然后,对用户推文数据进行抓取/检索。之后,进行数据预处理。完成后,使用IndoBERT方法对获得的数据进行分类。最后,本文利用IndoBERT方法给出了该检测分析的准确率值,准确率值为51%,F1-Score为31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信