{"title":"Conditional Rician $K$-Factor Discrimination for Indoor Localization via AOA Estimation","authors":"D. L. Hall, D. Jenkins","doi":"10.1109/MILCOM52596.2021.9653091","DOIUrl":null,"url":null,"abstract":"This paper proposes conditioning angle of arrival (AOA) algorithms for pseudo-spectrum fingerprint acquisition based on line of sight (LOS) and non-LOS detection schema for optimizing indoor localization. The proposed approach merges two AOA based methods being that of the MUltiple Signal Classsification (MUSIC) algorithm and virtual MUSIC algorithm into a conditional based localization approach with a uniform circular array (UCA). The paper begins by demonstrating the environmental dependencies of the two AOA approaches based on the Rician $K$-factor metric. The $K$-factor is then exploited as an algorithm selection metric to arrive at improved localization performance in a realistic indoor environment.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes conditioning angle of arrival (AOA) algorithms for pseudo-spectrum fingerprint acquisition based on line of sight (LOS) and non-LOS detection schema for optimizing indoor localization. The proposed approach merges two AOA based methods being that of the MUltiple Signal Classsification (MUSIC) algorithm and virtual MUSIC algorithm into a conditional based localization approach with a uniform circular array (UCA). The paper begins by demonstrating the environmental dependencies of the two AOA approaches based on the Rician $K$-factor metric. The $K$-factor is then exploited as an algorithm selection metric to arrive at improved localization performance in a realistic indoor environment.