Data-layout optimization based on memory-access-pattern analysis for source-code performance improvement

Riyane Sid Lakhdar, H. Charles, Maha Kooli
{"title":"Data-layout optimization based on memory-access-pattern analysis for source-code performance improvement","authors":"Riyane Sid Lakhdar, H. Charles, Maha Kooli","doi":"10.1145/3378678.3391874","DOIUrl":null,"url":null,"abstract":"With the rising impact of the memory wall, selecting the adequate data-structure implementation for a given kernel has become a performance-critical issue. This paper presents a new methodology to solve the data-layout decision problem by adapting an input implementation to the host hardware-memory hierarchy. The proposed method automatically identifies, for a given input software, the most performing data-layout implementation for each selected variable by analyzing the memory-access pattern. The proposed method is designed to be embedded within a general-purpose compiler. Experiments on PolybenchC benchmark, recursive-bilateral filter and jpeg-compression kernels, show that our method accurately determines the optimized data structure implementation. These optimized implementations allow reaching an execution-time speed-up up to 48.9X and a L3-miss reduction up to 98.1X, on an X86 processor implementing an Intel Xeon with three levels of data-caches using the least recently used cache-replacement policy.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3391874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the rising impact of the memory wall, selecting the adequate data-structure implementation for a given kernel has become a performance-critical issue. This paper presents a new methodology to solve the data-layout decision problem by adapting an input implementation to the host hardware-memory hierarchy. The proposed method automatically identifies, for a given input software, the most performing data-layout implementation for each selected variable by analyzing the memory-access pattern. The proposed method is designed to be embedded within a general-purpose compiler. Experiments on PolybenchC benchmark, recursive-bilateral filter and jpeg-compression kernels, show that our method accurately determines the optimized data structure implementation. These optimized implementations allow reaching an execution-time speed-up up to 48.9X and a L3-miss reduction up to 98.1X, on an X86 processor implementing an Intel Xeon with three levels of data-caches using the least recently used cache-replacement policy.
基于内存访问模式分析的数据布局优化,以提高源代码性能
随着内存墙的影响越来越大,为给定的内核选择适当的数据结构实现已经成为一个性能关键问题。本文提出了一种解决数据布局决策问题的新方法,通过使输入实现适应主机硬件-内存层次结构。该方法通过分析内存访问模式,为给定的输入软件自动识别每个选定变量的性能最佳的数据布局实现。所提出的方法被设计为嵌入在通用编译器中。在PolybenchC基准测试、递归双边过滤器和jpeg压缩核上的实验表明,我们的方法准确地确定了优化后的数据结构实现。在使用最近最少使用的缓存替换策略实现具有三层数据缓存的Intel Xeon的X86处理器上,这些优化的实现允许实现高达48.9倍的执行时加速和高达98.1倍的L3-miss减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信