Multispectral Imaging for Automated Fish Quality Grading

Dhananjaya Jayasundara, Lakshitha Ramanayake, Neranjan Senarath, S. Herath, R. Godaliyadda, Parakrama B. Ekanayake, V. Herath, Sujeewa Ariyawansha
{"title":"Multispectral Imaging for Automated Fish Quality Grading","authors":"Dhananjaya Jayasundara, Lakshitha Ramanayake, Neranjan Senarath, S. Herath, R. Godaliyadda, Parakrama B. Ekanayake, V. Herath, Sujeewa Ariyawansha","doi":"10.1109/ICIIS51140.2020.9342726","DOIUrl":null,"url":null,"abstract":"Fish grading is a vital process in the fisheries industry. In this paper, an algorithm is proposed utilizing multispectral imaging to automate fish grading. The images are obtained using an in-house developed Multispectral Imaging System. A Convolutional Neural Network (CNN) for image classification is utilized. From the CNN method, 93% accuracy was achieved. In addition to that, machine learning algorithms including Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM) were performed on the preprocessed dataset for comparison purpose.","PeriodicalId":352858,"journal":{"name":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS51140.2020.9342726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fish grading is a vital process in the fisheries industry. In this paper, an algorithm is proposed utilizing multispectral imaging to automate fish grading. The images are obtained using an in-house developed Multispectral Imaging System. A Convolutional Neural Network (CNN) for image classification is utilized. From the CNN method, 93% accuracy was achieved. In addition to that, machine learning algorithms including Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM) were performed on the preprocessed dataset for comparison purpose.
用于鱼类质量自动分级的多光谱成像
鱼类分级是渔业的一个重要过程。本文提出了一种利用多光谱成像实现鱼类自动分级的算法。图像是使用内部开发的多光谱成像系统获得的。利用卷积神经网络(CNN)进行图像分类。从CNN方法来看,准确率达到93%。此外,对预处理后的数据集进行了线性判别分析(LDA)、二次判别分析(QDA)、支持向量机(SVM)等机器学习算法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信