A. Equbal, Md. Asif Equbal, Md. Israr Equbal, A. K. Sood
{"title":"Multi-Criterion Decision Method for Roughness Optimization of Fused Deposition Modelled Parts","authors":"A. Equbal, Md. Asif Equbal, Md. Israr Equbal, A. K. Sood","doi":"10.4018/978-1-5225-9167-2.CH012","DOIUrl":null,"url":null,"abstract":"Fused deposition modelling is an extrusion-based automated fabrication process for making 3D physical objects from part digital information. The process offers distinct advantages, but the quality of part lacks in surface finish when compared with other liquid or powder based additive manufacturing processes. Considering the important factors affecting the part quality, the chapter attempted to optimize the raster angle, air gap, and raster width to minimize overall part roughness. Experiments are designed using face-centered central composite design and analysis of variance provides the effects of processing parameters on roughness of part. Suitability of developed model is tested using Anderson-darling normality test. Desirability method propose that roughness of different part faces are affected differently with chosen parameters, and thus, hybrid approach of WPCA based TOPSIS is used to break the correlation between part faces and reduce the overall part roughness. Optimizing shows that lower raster angle, lower air gap, and larger raster width minimizes overall part roughness.","PeriodicalId":300523,"journal":{"name":"Additive Manufacturing Technologies From an Optimization Perspective","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive Manufacturing Technologies From an Optimization Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9167-2.CH012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fused deposition modelling is an extrusion-based automated fabrication process for making 3D physical objects from part digital information. The process offers distinct advantages, but the quality of part lacks in surface finish when compared with other liquid or powder based additive manufacturing processes. Considering the important factors affecting the part quality, the chapter attempted to optimize the raster angle, air gap, and raster width to minimize overall part roughness. Experiments are designed using face-centered central composite design and analysis of variance provides the effects of processing parameters on roughness of part. Suitability of developed model is tested using Anderson-darling normality test. Desirability method propose that roughness of different part faces are affected differently with chosen parameters, and thus, hybrid approach of WPCA based TOPSIS is used to break the correlation between part faces and reduce the overall part roughness. Optimizing shows that lower raster angle, lower air gap, and larger raster width minimizes overall part roughness.