Environmental-aware optimization of MPI checkpointing intervals

H. Jitsumoto, Toshio Endo, S. Matsuoka
{"title":"Environmental-aware optimization of MPI checkpointing intervals","authors":"H. Jitsumoto, Toshio Endo, S. Matsuoka","doi":"10.1109/CLUSTR.2008.4663790","DOIUrl":null,"url":null,"abstract":"Fault-tolerance for HPC systems with long-running applications of massive and growing scale is now essential. Although checkpointing with rollback recovery is a popular technique, automated checkpointing is becoming troublesome in a real system, due to the extremely large size of collective application memory. Therefore, automated optimization of the checkpoint interval is essential, but the optimal point depends on hardware failure rates and I/O bandwidth. Our new model and an algorithm, which is an extension of Vaidyapsilas model, solve the problem by taking such parameters into account. Prototype implementation on our fault-tolerant MPI framework ABARIS showed approximately 5.5% improvement over statically user-determined cases.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fault-tolerance for HPC systems with long-running applications of massive and growing scale is now essential. Although checkpointing with rollback recovery is a popular technique, automated checkpointing is becoming troublesome in a real system, due to the extremely large size of collective application memory. Therefore, automated optimization of the checkpoint interval is essential, but the optimal point depends on hardware failure rates and I/O bandwidth. Our new model and an algorithm, which is an extension of Vaidyapsilas model, solve the problem by taking such parameters into account. Prototype implementation on our fault-tolerant MPI framework ABARIS showed approximately 5.5% improvement over statically user-determined cases.
MPI检查点间隔的环境感知优化
对于长期运行且规模不断扩大的高性能计算系统来说,容错是必不可少的。虽然带回滚恢复的检查点是一种流行的技术,但是由于应用程序的集体内存非常大,在实际系统中自动检查点变得很麻烦。因此,检查点间隔的自动优化是必要的,但最优点取决于硬件故障率和I/O带宽。我们的新模型和算法是Vaidyapsilas模型的扩展,通过考虑这些参数来解决问题。在我们的容错MPI框架ABARIS上的原型实现比静态用户确定的情况下改进了大约5.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信