Towards Automatically Setting Language Bias in Relational Learning

Jose Picado, Arash Termehchy, Alan Fern, Sudhanshu Pathak
{"title":"Towards Automatically Setting Language Bias in Relational Learning","authors":"Jose Picado, Arash Termehchy, Alan Fern, Sudhanshu Pathak","doi":"10.1145/3076246.3076249","DOIUrl":null,"url":null,"abstract":"Relational databases are valuable resources for learning novel and interesting relations and concepts. Relational learning algorithms learn the definition of new relations in terms of the existing relations in the database. In order to constraint the search through the large space of candidate definitions, users must specify a language bias. Unfortunately, specifying the language bias is done via trial and error and is guided by the expert's intuitions. Hence, it normally takes a great deal of time and effort to effectively use these algorithms. We report our on-going work on building AutoMode, a system that leverages information in the schema and content of the database to automatically induce the language bias used by popular relational learning algorithms.","PeriodicalId":118931,"journal":{"name":"Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3076246.3076249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Relational databases are valuable resources for learning novel and interesting relations and concepts. Relational learning algorithms learn the definition of new relations in terms of the existing relations in the database. In order to constraint the search through the large space of candidate definitions, users must specify a language bias. Unfortunately, specifying the language bias is done via trial and error and is guided by the expert's intuitions. Hence, it normally takes a great deal of time and effort to effectively use these algorithms. We report our on-going work on building AutoMode, a system that leverages information in the schema and content of the database to automatically induce the language bias used by popular relational learning algorithms.
关系学习中语言偏差的自动设置
关系数据库是学习新颖有趣的关系和概念的宝贵资源。关系学习算法根据数据库中的现有关系学习新关系的定义。为了在候选定义的大空间中约束搜索,用户必须指定语言偏差。不幸的是,指定语言偏差是通过试验和错误完成的,并由专家的直觉指导。因此,要有效地使用这些算法通常需要花费大量的时间和精力。我们报告了我们正在进行的构建AutoMode的工作,AutoMode是一个利用模式和数据库内容中的信息来自动诱导流行的关系学习算法使用的语言偏差的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信