Analysis of Online Parameter Estimation for Electrochemical Li-ion Battery Models via Reduced Sensitivity Equations

Z. Gima, Dylan Kato, Reinhardt Klein, S. Moura
{"title":"Analysis of Online Parameter Estimation for Electrochemical Li-ion Battery Models via Reduced Sensitivity Equations","authors":"Z. Gima, Dylan Kato, Reinhardt Klein, S. Moura","doi":"10.23919/acc45564.2020.9147260","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of online parameter estimation in an electrochemical Li-ion battery model. Online parameter estimation is necessary to account for model mismatch, environmental disturbances, and cycle-induced aging in Li-ion battery models. Sensitivity analysis can improve parameter estimation by identifying which data the parameters are most sensitive to. However, computing parameter sensitivity in full-order electrochemical models is typically intractable for online applications. Using a reduced-order model can lower the computational burden and, as we demonstrate, approximates well the sensitivity of the higher-order model. To provide further insight into the parameter estimation challenge, we analyze the effect that identifying parameters according to voltage RMSE data has on internal state errors. We perform a simulation study which demonstrates that parameter estimation approaches based on this paradigm are not sufficient for safe battery operation or other control objectives that require accurate estimates of these states.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper focuses on the problem of online parameter estimation in an electrochemical Li-ion battery model. Online parameter estimation is necessary to account for model mismatch, environmental disturbances, and cycle-induced aging in Li-ion battery models. Sensitivity analysis can improve parameter estimation by identifying which data the parameters are most sensitive to. However, computing parameter sensitivity in full-order electrochemical models is typically intractable for online applications. Using a reduced-order model can lower the computational burden and, as we demonstrate, approximates well the sensitivity of the higher-order model. To provide further insight into the parameter estimation challenge, we analyze the effect that identifying parameters according to voltage RMSE data has on internal state errors. We perform a simulation study which demonstrates that parameter estimation approaches based on this paradigm are not sufficient for safe battery operation or other control objectives that require accurate estimates of these states.
研究了电化学锂离子电池模型的在线参数估计问题。在锂离子电池模型中,在线参数估计是考虑模型失配、环境干扰和循环诱发老化的必要条件。灵敏度分析可以通过识别参数对哪些数据最敏感来改进参数估计。然而,计算全阶电化学模型的参数灵敏度对于在线应用来说是非常棘手的。使用降阶模型可以降低计算负担,并且如我们所示,可以很好地近似高阶模型的灵敏度。为了进一步了解参数估计的挑战,我们分析了根据电压RMSE数据识别参数对内部状态误差的影响。我们进行了一项模拟研究,该研究表明,基于这种范式的参数估计方法对于电池的安全运行或其他需要准确估计这些状态的控制目标是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信