Effect of separate sampling on classification and the minimax criterion

M. S. Esfahani, E. Dougherty
{"title":"Effect of separate sampling on classification and the minimax criterion","authors":"M. S. Esfahani, E. Dougherty","doi":"10.1109/GENSIPS.2013.6735935","DOIUrl":null,"url":null,"abstract":"It is commonplace in bioinformatics (and elsewhere) to build a classifier from sample data in which the sample sizes of the classes are not random; that is, they are selected prior to sampling. The result is that there is no estimate of the prior class probabilities available from the data. In this paper, we find an analytic result for the minimax solution for the class prior probabilities for a general Neyman-Pearson induced classifier. From that we derive Anderson's classical minimax prior probability “estimate.” Using synthetic and real data, we demonstrate the degradation in classifier performance from using inaccurate values for the prior probabilities.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

It is commonplace in bioinformatics (and elsewhere) to build a classifier from sample data in which the sample sizes of the classes are not random; that is, they are selected prior to sampling. The result is that there is no estimate of the prior class probabilities available from the data. In this paper, we find an analytic result for the minimax solution for the class prior probabilities for a general Neyman-Pearson induced classifier. From that we derive Anderson's classical minimax prior probability “estimate.” Using synthetic and real data, we demonstrate the degradation in classifier performance from using inaccurate values for the prior probabilities.
分离抽样对分类和极大极小准则的影响
在生物信息学(和其他领域)中,从样本数据中构建分类器是很常见的,其中类的样本大小不是随机的;也就是说,它们是在抽样之前被选择的。结果是无法从数据中获得先验类概率的估计。本文给出了一类广义内曼-皮尔逊诱导分类器类先验概率的极大极小解的解析结果。由此我们导出了Anderson经典的极小极大先验概率“估计”。使用合成数据和真实数据,我们证明了使用不准确的先验概率值会降低分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信