EEG Feature Fusion for Person Identification Using Efficient Machine Learning Approach

Zaid Abdi Alkareem Alyasseri, M. Al-Betar, M. Awadallah, S. Makhadmeh, O. Alomari, A. Abasi, Iyad Abu Doush
{"title":"EEG Feature Fusion for Person Identification Using Efficient Machine Learning Approach","authors":"Zaid Abdi Alkareem Alyasseri, M. Al-Betar, M. Awadallah, S. Makhadmeh, O. Alomari, A. Abasi, Iyad Abu Doush","doi":"10.1109/PICICT53635.2021.00029","DOIUrl":null,"url":null,"abstract":"Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. This paper proposed a new method for EEG feature extraction based on fusing different EEG features. In general, EEG feature extraction can be categorized into three types which are time domain, frequency domain, and time-frequency domain features. This paper also applied several supervised learning approaches to select the efficient classifier for EEG-based person identification. The performance of the proposed method is tested using standard EEG datasets, namely, EEG Motor Movement/Imagery Dataset. The results are evaluated using four common criteria which are: accuracy rate (ACCEEC), sensitivity (SenEEC), specificity (SpeEEC) and F-score (FSEEC). The experiment results show that the fusion approach achieves better results compared with a traditional EEG feature extraction approach. The proposed fusion feature method is recommended to apply in more challenging signal problem instances, such as user authentication or early detection of epilepsy based on EEG signals.","PeriodicalId":308869,"journal":{"name":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Palestinian International Conference on Information and Communication Technology (PICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT53635.2021.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. This paper proposed a new method for EEG feature extraction based on fusing different EEG features. In general, EEG feature extraction can be categorized into three types which are time domain, frequency domain, and time-frequency domain features. This paper also applied several supervised learning approaches to select the efficient classifier for EEG-based person identification. The performance of the proposed method is tested using standard EEG datasets, namely, EEG Motor Movement/Imagery Dataset. The results are evaluated using four common criteria which are: accuracy rate (ACCEEC), sensitivity (SenEEC), specificity (SpeEEC) and F-score (FSEEC). The experiment results show that the fusion approach achieves better results compared with a traditional EEG feature extraction approach. The proposed fusion feature method is recommended to apply in more challenging signal problem instances, such as user authentication or early detection of epilepsy based on EEG signals.
基于高效机器学习方法的脑电特征融合人脸识别
近年来,脑电图(EEG)信号显示出一种极具潜力的新型人物识别技术。提出了一种基于不同脑电信号特征融合的脑电信号特征提取方法。一般来说,脑电信号特征提取可以分为时域特征、频域特征和时频域特征三种类型。本文还应用了几种监督学习方法来选择有效的基于脑电图的人识别分类器。使用标准EEG数据集,即EEG运动/图像数据集,测试了所提出方法的性能。采用准确率(ACCEEC)、灵敏度(SenEEC)、特异性(SpeEEC)和f评分(FSEEC)四种常用标准对结果进行评估。实验结果表明,与传统的脑电信号特征提取方法相比,融合方法取得了更好的效果。建议将融合特征方法应用于更具挑战性的信号问题实例,例如基于脑电图信号的用户认证或癫痫早期检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信