Control Ore Processing Quality Based on Xgboost Machine Learning Algorithm

Zibin Bi, Chenxi Fu, Junyi Zhu, Yaxuan Du
{"title":"Control Ore Processing Quality Based on Xgboost Machine Learning Algorithm","authors":"Zibin Bi, Chenxi Fu, Junyi Zhu, Yaxuan Du","doi":"10.1109/ACEDPI58926.2023.00042","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of quality control of ore processing, using xgboost machine learning algorithm of sklearn module in python, sample interpolation method, 011 minimization loss model and confusion matrix to build xgboost regression prediction model and classification prediction model and error value evaluation model. Firstly, data processing is performed to normalize the data, then xgboost regression prediction is performed for product quality results, and finally confusion matrix is established for model testing, and the parameters are cyclically modified to reach the optimum to obtain various indexes. On this basis, the production and processing data and process data are added, and the data are processed by the spline interpolation method, and then the xgboost machine learning algorithm is used to calculate the prediction results of the pass rate can be obtained from various indicators.","PeriodicalId":124469,"journal":{"name":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEDPI58926.2023.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problem of quality control of ore processing, using xgboost machine learning algorithm of sklearn module in python, sample interpolation method, 011 minimization loss model and confusion matrix to build xgboost regression prediction model and classification prediction model and error value evaluation model. Firstly, data processing is performed to normalize the data, then xgboost regression prediction is performed for product quality results, and finally confusion matrix is established for model testing, and the parameters are cyclically modified to reach the optimum to obtain various indexes. On this basis, the production and processing data and process data are added, and the data are processed by the spline interpolation method, and then the xgboost machine learning algorithm is used to calculate the prediction results of the pass rate can be obtained from various indicators.
基于Xgboost机器学习算法的矿石加工质量控制
本文以矿石加工质量控制问题为研究对象,利用python中sklearn模块的xgboost机器学习算法、样本插值法、011最小化损失模型和混淆矩阵构建xgboost回归预测模型、分类预测模型和误差值评价模型。首先对数据进行归一化处理,然后对产品质量结果进行xgboost回归预测,最后建立混淆矩阵进行模型检验,并对参数进行循环修正,达到最优,得到各项指标。在此基础上,添加生产加工数据和工艺数据,并对数据进行样条插值法处理,然后利用xgboost机器学习算法计算从各项指标中可得到合格率的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信