HyperUNet for Medical Hyperspectral Image Segmentation on a Choledochal Database

Gan Zhan, Y. Iwamoto, Yenwei Chen
{"title":"HyperUNet for Medical Hyperspectral Image Segmentation on a Choledochal Database","authors":"Gan Zhan, Y. Iwamoto, Yenwei Chen","doi":"10.1109/ICCE53296.2022.9730171","DOIUrl":null,"url":null,"abstract":"Microscopy medical hyperspectral images, which are characterized in multiple observation bands under different spectral frequencies, contain profuse spectral information for disease diagnosis. Consequently, an increasing number of deep learning methods have recently been proposed to solve the medical hyperspectral image segmentation task. In this study, we propose a new segmentation network (HyperUNet) as a better version of UNet for medical hyperspectral image segmentation on a choledochal database. Considering the useless spectral in-formation that exists in the hyperspectral image that is irrelevant to our task, HyperUNet first uses the linear transformation block to extract the useful spectral information from the hyperspectral image, and then applies the UNet model to it to capture the tumor area. Finally, when reconstructing the mask, HyperUNet applies the multi -scale loss function in cases of underuse and overuse of low-level detailed features and high-level semantic features. We compare our HyperUNet to other competing methods, and the results show that our HyperUNet is superior.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microscopy medical hyperspectral images, which are characterized in multiple observation bands under different spectral frequencies, contain profuse spectral information for disease diagnosis. Consequently, an increasing number of deep learning methods have recently been proposed to solve the medical hyperspectral image segmentation task. In this study, we propose a new segmentation network (HyperUNet) as a better version of UNet for medical hyperspectral image segmentation on a choledochal database. Considering the useless spectral in-formation that exists in the hyperspectral image that is irrelevant to our task, HyperUNet first uses the linear transformation block to extract the useful spectral information from the hyperspectral image, and then applies the UNet model to it to capture the tumor area. Finally, when reconstructing the mask, HyperUNet applies the multi -scale loss function in cases of underuse and overuse of low-level detailed features and high-level semantic features. We compare our HyperUNet to other competing methods, and the results show that our HyperUNet is superior.
基于胆总管数据库的医学高光谱图像分割HyperUNet
显微医学高光谱图像在不同的光谱频率下具有多个观测波段的特征,为疾病诊断提供了丰富的光谱信息。因此,近年来人们提出了越来越多的深度学习方法来解决医学高光谱图像分割任务。在这项研究中,我们提出了一种新的分割网络(HyperUNet)作为UNet的更好版本,用于医学高光谱图像在胆总管数据库上的分割。考虑到高光谱图像中存在与我们的任务无关的无用光谱信息,HyperUNet首先使用线性变换块从高光谱图像中提取有用的光谱信息,然后对其应用UNet模型捕获肿瘤区域。最后,在重建掩码时,HyperUNet在低级细节特征和高级语义特征使用不足和过度的情况下应用多尺度损失函数。我们将HyperUNet与其他竞争方法进行了比较,结果表明我们的HyperUNet具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信