Ahmed Alharbi, Hai Dong, X. Yi, Prabath Abeysekara
{"title":"NPS-AntiClone: Identity Cloning Detection based on Non-Privacy-Sensitive User Profile Data","authors":"Ahmed Alharbi, Hai Dong, X. Yi, Prabath Abeysekara","doi":"10.1109/ICWS53863.2021.00083","DOIUrl":null,"url":null,"abstract":"Social sensing is a paradigm that allows crowd-sourcing data from humans and devices. This sensed data (e.g. social network posts) can be hosted in social-sensor clouds (i.e. social networks) and delivered as social-sensor cloud services (SocSen services). These services can be identified by their providers' social network accounts. Attackers intrude social-sensor clouds by cloning SocSen service providers' user profiles to deceive social-sensor cloud users. We propose a novel unsupervised SocSen service provider identity cloning detection approach, NPS-AntiClone, to prevent the detrimental outcomes caused by such identity deception. This approach leverages non-privacy-sensitive user profile data gathered from social networks to perform cloned identity detection. It consists of three main components: 1) a multi-view account representation model, 2) an embedding learning model and 3) a prediction model. The multi-view account representation model forms three different views for a given identity, namely a post view, a network view and a profile attribute view. The embedding learning model learns a single embedding from the generated multi-view representation using Weighted Generalized Canonical Correlation Analysis. Finally, NPS-AntiClone calculates the cosine similarity between two accounts' embedding to predict whether these two accounts contain a cloned account and its victim. We evaluated our proposed approach using a real-world dataset. The results showed that NPS-AntiClone significantly outperforms the existing state-of-the-art identity cloning detection techniques and machine learning approaches.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Social sensing is a paradigm that allows crowd-sourcing data from humans and devices. This sensed data (e.g. social network posts) can be hosted in social-sensor clouds (i.e. social networks) and delivered as social-sensor cloud services (SocSen services). These services can be identified by their providers' social network accounts. Attackers intrude social-sensor clouds by cloning SocSen service providers' user profiles to deceive social-sensor cloud users. We propose a novel unsupervised SocSen service provider identity cloning detection approach, NPS-AntiClone, to prevent the detrimental outcomes caused by such identity deception. This approach leverages non-privacy-sensitive user profile data gathered from social networks to perform cloned identity detection. It consists of three main components: 1) a multi-view account representation model, 2) an embedding learning model and 3) a prediction model. The multi-view account representation model forms three different views for a given identity, namely a post view, a network view and a profile attribute view. The embedding learning model learns a single embedding from the generated multi-view representation using Weighted Generalized Canonical Correlation Analysis. Finally, NPS-AntiClone calculates the cosine similarity between two accounts' embedding to predict whether these two accounts contain a cloned account and its victim. We evaluated our proposed approach using a real-world dataset. The results showed that NPS-AntiClone significantly outperforms the existing state-of-the-art identity cloning detection techniques and machine learning approaches.