Communication Complexity of Two-party Nonparametric Global Density Estimation

Jingbo Liu
{"title":"Communication Complexity of Two-party Nonparametric Global Density Estimation","authors":"Jingbo Liu","doi":"10.1109/CISS53076.2022.9751150","DOIUrl":null,"url":null,"abstract":"Consider the problem of nonparametric estimation of an unknown <tex>$\\beta$</tex> -Hölder smooth density function <tex>$p_{XY}$</tex> with compact support, where <tex>$X$</tex> and <tex>$Y$</tex> are both <tex>$d$</tex> dimensional. An infinite sequence of i.i.d. samples <tex>$(X_{i}, \\ Y_{i})$</tex> are generated according to this distribution, and two terminals observe <tex>$(X_{i})$</tex> and <tex>$(Y_{i})$</tex>, respectively. They are allowed to exchange <tex>$k$</tex> bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean integrated square risk is order <tex>$(\\frac{k}{\\log k})^{-\\frac{\\beta}{d+\\beta}}$</tex> for one-way protocols, and between <tex>$(\\frac{k}{\\log k})^{-\\frac{\\beta}{d+\\beta}}$</tex> and <tex>$k^{-\\frac{\\beta}{d+\\beta}}$</tex> for interactive protocols. These rates are different from the case of pointwise density estimation which we recently determined in another work. The interactive lower bound in this work used, among other things, a recent result of Ordentlich and Polyanskiy regarding the optimality of binary inputs in certain optimizations related to the strong data processing constant.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider the problem of nonparametric estimation of an unknown $\beta$ -Hölder smooth density function $p_{XY}$ with compact support, where $X$ and $Y$ are both $d$ dimensional. An infinite sequence of i.i.d. samples $(X_{i}, \ Y_{i})$ are generated according to this distribution, and two terminals observe $(X_{i})$ and $(Y_{i})$, respectively. They are allowed to exchange $k$ bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean integrated square risk is order $(\frac{k}{\log k})^{-\frac{\beta}{d+\beta}}$ for one-way protocols, and between $(\frac{k}{\log k})^{-\frac{\beta}{d+\beta}}$ and $k^{-\frac{\beta}{d+\beta}}$ for interactive protocols. These rates are different from the case of pointwise density estimation which we recently determined in another work. The interactive lower bound in this work used, among other things, a recent result of Ordentlich and Polyanskiy regarding the optimality of binary inputs in certain optimizations related to the strong data processing constant.
两方非参数全局密度估计的通信复杂度
考虑一个未知的$\beta$ -Hölder平滑密度函数$p_{XY}$的非参数估计问题,其中$X$和$Y$都是$d$维。根据这个分布生成一个无限序列的i.i.d样本$(X_{i}, \ Y_{i})$,两个终端分别观察到$(X_{i})$和$(Y_{i})$。为了让Bob估算未知密度,它们可以以一种方式或交互方式交换$k$位。我们证明了最小最大平均积分平方风险对于单向协议是阶$(\frac{k}{\log k})^{-\frac{\beta}{d+\beta}}$,对于交互协议是介于$(\frac{k}{\log k})^{-\frac{\beta}{d+\beta}}$和$k^{-\frac{\beta}{d+\beta}}$之间。这些速率不同于我们最近在另一项工作中确定的逐点密度估计。除其他事项外,本工作中的交互下界使用了Ordentlich和polyansky最近关于与强数据处理常数相关的某些优化中的二进制输入的最优性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信