Countering feedback sparsity and manipulation in reputation systems

Li Xiong, Ling Liu, M. Ahamad
{"title":"Countering feedback sparsity and manipulation in reputation systems","authors":"Li Xiong, Ling Liu, M. Ahamad","doi":"10.1109/COLCOM.2007.4553831","DOIUrl":null,"url":null,"abstract":"Reputation systems provide a promising way for building trust through social control in collaborative communities by harnessing the community knowledge in the form of feedback. However, reputation systems also introduce vulnerabilities due to potential manipulations by dishonest or malicious players. In this paper, we focus on two closely related problems - feedback sparsity and potential feedback manipulations - and propose a feedback similarity based inference framework. We perform extensive evaluations of various algorithmic components of the framework and evaluate their effectiveness on countering feedback sparsity in the presence of feedback manipulations.","PeriodicalId":340691,"journal":{"name":"2007 International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2007)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCOM.2007.4553831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Reputation systems provide a promising way for building trust through social control in collaborative communities by harnessing the community knowledge in the form of feedback. However, reputation systems also introduce vulnerabilities due to potential manipulations by dishonest or malicious players. In this paper, we focus on two closely related problems - feedback sparsity and potential feedback manipulations - and propose a feedback similarity based inference framework. We perform extensive evaluations of various algorithmic components of the framework and evaluate their effectiveness on countering feedback sparsity in the presence of feedback manipulations.
对抗声誉系统中的反馈稀疏和操纵
声誉系统通过以反馈的形式利用社区知识,在协作社区中通过社会控制来建立信任,这是一种很有希望的方式。然而,由于不诚实或恶意玩家的潜在操纵,声誉系统也引入了漏洞。在本文中,我们关注两个密切相关的问题-反馈稀疏性和潜在的反馈操纵-并提出了一个基于反馈相似度的推理框架。我们对框架的各种算法组件进行了广泛的评估,并评估了它们在存在反馈操作的情况下对抗反馈稀疏性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信