Gas-solid Flow Patterns Identification Based on Artificial Neural Network

IEEA '18 Pub Date : 2018-03-28 DOI:10.1145/3208854.3208892
F. Fu, Shimin Wang
{"title":"Gas-solid Flow Patterns Identification Based on Artificial Neural Network","authors":"F. Fu, Shimin Wang","doi":"10.1145/3208854.3208892","DOIUrl":null,"url":null,"abstract":"Flow patterns identification of the gas--solid flow in pneumatic transport pipelines is significant for the optimized design and operation of the pneumatic conveying system. The objective of this work is to training an Artificial Neural Network(ANN) to identify flow patterns (suspension flow, laminar flow, dense-dilute flow and dune flow) of the gas-solid flow in a horizontal pneumatic conveying pipeline. The performance of the ANN models was evaluated respectively using Hurst exponent of a ring-shaped electrode's output signal and Hurst exponent matrix of an electrostatic sensor array's output signals. Results show a higher recognition rate can be got by using the electrode sensor array, and the improvement is 5% for suspension flow, 9% for laminar flow and 13% for dense-dilute flow.","PeriodicalId":365707,"journal":{"name":"IEEA '18","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEA '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208854.3208892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Flow patterns identification of the gas--solid flow in pneumatic transport pipelines is significant for the optimized design and operation of the pneumatic conveying system. The objective of this work is to training an Artificial Neural Network(ANN) to identify flow patterns (suspension flow, laminar flow, dense-dilute flow and dune flow) of the gas-solid flow in a horizontal pneumatic conveying pipeline. The performance of the ANN models was evaluated respectively using Hurst exponent of a ring-shaped electrode's output signal and Hurst exponent matrix of an electrostatic sensor array's output signals. Results show a higher recognition rate can be got by using the electrode sensor array, and the improvement is 5% for suspension flow, 9% for laminar flow and 13% for dense-dilute flow.
基于人工神经网络的气固流动模式识别
气固两相流在气力输送管道中的流型识别对于气力输送系统的优化设计和运行具有重要意义。本文的目的是训练一个人工神经网络(ANN)来识别水平气力输送管道中气固流的流型(悬浮流、层流、浓稀流和沙丘流)。利用环形电极输出信号的Hurst指数和静电传感器阵列输出信号的Hurst指数矩阵分别评价了人工神经网络模型的性能。结果表明,电极传感器阵列对悬浮流、层流和浓稀流的识别率分别提高了5%、9%和13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信