Probabilistic analysis of an approximation algorithm for maximum subset sum using recurrence relations

ACM-SE 33 Pub Date : 1995-03-17 DOI:10.1145/1122018.1122057
Kequin Li
{"title":"Probabilistic analysis of an approximation algorithm for maximum subset sum using recurrence relations","authors":"Kequin Li","doi":"10.1145/1122018.1122057","DOIUrl":null,"url":null,"abstract":"Given a positive integer <i>M</i>, and a set <i>S</i> = {<i>x</i><inf>1</inf>, <i>x</i><inf>2</inf>, ..., <i>x</i><inf><i>n</i></inf>} of positive integers, the maximum subset sum problem is to find a subset <i>S'</i> of <i>S</i> such that Σ<i>x</i>ε<i>s'<sup>x</sup></i> is maximized under the constraint that the summation is no larger than <i>M</i>. In addition, the cardinality of <i>S'</i> is also a maximum among all subsets of <i>S</i> which achieve the maximum subset sum. This problem is known to be NP-hard. We analyze the average-case performance of a simple on-line approximation algorithm assuming that all integers in <i>S</i> are independent and have the same probabilty distribution. We develop a general methodology, i.e., using recurrence relations, to evaluate the expected values of the content and the cardinality of <i>S'</i> for any distribution. The maximum subset sum problem has important applications, especially in static job scheduling in multiprogrammed parallel systems. The algorithm studied can also be easily adapted for dynamic job scheduling in such systems.","PeriodicalId":349974,"journal":{"name":"ACM-SE 33","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 33","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1122018.1122057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a positive integer M, and a set S = {x1, x2, ..., xn} of positive integers, the maximum subset sum problem is to find a subset S' of S such that Σxεs'x is maximized under the constraint that the summation is no larger than M. In addition, the cardinality of S' is also a maximum among all subsets of S which achieve the maximum subset sum. This problem is known to be NP-hard. We analyze the average-case performance of a simple on-line approximation algorithm assuming that all integers in S are independent and have the same probabilty distribution. We develop a general methodology, i.e., using recurrence relations, to evaluate the expected values of the content and the cardinality of S' for any distribution. The maximum subset sum problem has important applications, especially in static job scheduling in multiprogrammed parallel systems. The algorithm studied can also be easily adapted for dynamic job scheduling in such systems.
使用递归关系的最大子集和近似算法的概率分析
给定正整数M,集合S = {x1, x2,…, xn}的正整数,最大子集和问题是在求和不大于m的约束下,求S的一个子集S'使Σxεs'x最大,并且S'的基数也是S所有达到最大子集和的子集中的最大值。这个问题被称为NP-hard。我们分析了一个简单的在线近似算法的平均情况下的性能,假设S中的所有整数都是独立的并且具有相同的概率分布。我们开发了一种通用的方法,即使用递归关系来评估任何分布的内容和基数的期望值。最大子集和问题在多程序并行系统的静态作业调度中有着重要的应用。所研究的算法也可以很容易地适用于此类系统的动态作业调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信