Support Vector Machine and Decision Tree-Based Elective Course Suggestion System: A Case Study

M. F. Adak, S. Ercan
{"title":"Support Vector Machine and Decision Tree-Based Elective Course Suggestion System: A Case Study","authors":"M. F. Adak, S. Ercan","doi":"10.1109/3ICT53449.2021.9581846","DOIUrl":null,"url":null,"abstract":"Nowadays, online education has become widespread, and the search for new techniques has begun to increase. The high number of quotas in university education in Turkey increases the number of students per instructor. It is not at the desired level for the student to receive a good education in the presence of an advisor and choose the appropriate course for his / her field due to a large number of students. In this study, a suggestion system is proposed by analyzing the previous courses taken by university students in directing the elective course. In this study, which courses would be beneficial to choose and which would be useless are presented with a web interface in which Support Vector Machine and decision trees are used. In the pilot study that the model developed conducted in the Computer Engineering department, an average of 76% success was achieved in test data sets. This success shows that the student can examine the compulsory courses and suggest elective courses suitable for his/her field and that he/she will like.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, online education has become widespread, and the search for new techniques has begun to increase. The high number of quotas in university education in Turkey increases the number of students per instructor. It is not at the desired level for the student to receive a good education in the presence of an advisor and choose the appropriate course for his / her field due to a large number of students. In this study, a suggestion system is proposed by analyzing the previous courses taken by university students in directing the elective course. In this study, which courses would be beneficial to choose and which would be useless are presented with a web interface in which Support Vector Machine and decision trees are used. In the pilot study that the model developed conducted in the Computer Engineering department, an average of 76% success was achieved in test data sets. This success shows that the student can examine the compulsory courses and suggest elective courses suitable for his/her field and that he/she will like.
基于支持向量机与决策树的选修课建议系统案例研究
如今,在线教育已经普及,对新技术的探索也开始增加。土耳其大学教育的高配额增加了每位教师的学生数量。由于学生人数众多,学生在指导老师的指导下接受良好的教育,并选择适合自己领域的课程,这并不是理想的水平。本研究通过对大学生选修课程指导的分析,提出了一个建议系统。在本研究中,选择哪些课程是有益的,哪些课程是无用的,并通过使用支持向量机和决策树的web界面来呈现。在计算机工程系进行的该模型的试点研究中,测试数据集的平均成功率为76%。这个成功表明学生可以检查必修课,并建议适合他/她的领域和他/她喜欢的选修课程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信