Generation/transmission power system reliability evaluation by Monte Carlo simulation assuming a fuzzy load description

J. Saraiva, Vladimiro Miranda, L. Pinto
{"title":"Generation/transmission power system reliability evaluation by Monte Carlo simulation assuming a fuzzy load description","authors":"J. Saraiva, Vladimiro Miranda, L. Pinto","doi":"10.1109/PICA.1995.515291","DOIUrl":null,"url":null,"abstract":"This paper presents a Monte Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power not supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.","PeriodicalId":294493,"journal":{"name":"Proceedings of Power Industry Computer Applications Conference","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Power Industry Computer Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1995.515291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a Monte Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power not supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.
基于模糊负荷描述的发电/输电系统可靠性蒙特卡罗仿真
本文提出了一种考虑由模糊数定义的负荷的蒙特卡罗算法。在这种方法中,根据控制系统组件生命周期的概率模型对状态进行采样,而模糊概念用于模拟与未来负载行为相关的不确定性。该模型可用于评估发电/输电系统的可靠性,用于长期规划研究,因为人们对每种类型的数据使用了更充分的不确定性模型。对每个采样状态运行一个模糊最优潮流,从而建立其不供电隶属函数。本文提出了反映概率模型和模糊概念集成的新指标,并讨论了用模糊数定义负荷时方差缩减技术的应用。一个基于IEEE 30总线系统的案例研究说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信