Enhanced 3D brain tumor segmentation using assortedprecision training

Pandya Pandya, O. Oguine, Harita Bhargava, S. Zade
{"title":"Enhanced 3D brain tumor segmentation using assortedprecision training","authors":"Pandya Pandya, O. Oguine, Harita Bhargava, S. Zade","doi":"10.54646/bijiam.2022.10","DOIUrl":null,"url":null,"abstract":"A brain tumor is a medical disorder faced by individuals of all demographics. Medically, it is described as the spreadof non-essential cells close to or throughout the brain. Symptoms of this ailment include headaches, seizures, andsensory changes. This research explores two main categories of brain tumors: benign and malignant. Benignspreads steadily, and malignant express growth makes it dangerous. Early identification of brain tumors is a crucialfactor for the survival of patients. This research provides a state-of-the-art approach to the early identification oftumors within the brain. We implemented the SegResNet architecture, a widely adopted architecture for three-dimensional segmentation, and trained it using the automatic multi-precision method. We incorporated the diceloss function and dice metric for evaluating the model. We got a dice score of 0.84. For the tumor core, we got adice score of 0.84; for the whole tumor, 0.90; and for the enhanced tumor, we got a score of 0.79.","PeriodicalId":231453,"journal":{"name":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijiam.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A brain tumor is a medical disorder faced by individuals of all demographics. Medically, it is described as the spreadof non-essential cells close to or throughout the brain. Symptoms of this ailment include headaches, seizures, andsensory changes. This research explores two main categories of brain tumors: benign and malignant. Benignspreads steadily, and malignant express growth makes it dangerous. Early identification of brain tumors is a crucialfactor for the survival of patients. This research provides a state-of-the-art approach to the early identification oftumors within the brain. We implemented the SegResNet architecture, a widely adopted architecture for three-dimensional segmentation, and trained it using the automatic multi-precision method. We incorporated the diceloss function and dice metric for evaluating the model. We got a dice score of 0.84. For the tumor core, we got adice score of 0.84; for the whole tumor, 0.90; and for the enhanced tumor, we got a score of 0.79.
使用分类精确训练增强3D脑肿瘤分割
脑肿瘤是所有人群都面临的一种医学疾病。医学上,它被描述为非必需细胞在大脑附近或整个大脑的扩散。这种疾病的症状包括头痛、癫痫发作和感觉改变。本研究探讨了两大类脑肿瘤:良性和恶性。良性扩散稳定,恶性表达的增长使其变得危险。脑肿瘤的早期诊断是影响患者生存的关键因素。这项研究为早期识别脑部肿瘤提供了最先进的方法。我们实现了广泛采用的三维分割体系结构SegResNet,并使用自动多精度方法对其进行训练。我们结合了骰子损失函数和骰子度量来评估模型。我们的骰子得分是0.84。对于肿瘤核心,我们的建议得分为0.84;对于整个肿瘤,0.90;对于增强的肿瘤,我们得到了0.79分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信