Pandya Pandya, O. Oguine, Harita Bhargava, S. Zade
{"title":"Enhanced 3D brain tumor segmentation using assortedprecision training","authors":"Pandya Pandya, O. Oguine, Harita Bhargava, S. Zade","doi":"10.54646/bijiam.2022.10","DOIUrl":null,"url":null,"abstract":"A brain tumor is a medical disorder faced by individuals of all demographics. Medically, it is described as the spreadof non-essential cells close to or throughout the brain. Symptoms of this ailment include headaches, seizures, andsensory changes. This research explores two main categories of brain tumors: benign and malignant. Benignspreads steadily, and malignant express growth makes it dangerous. Early identification of brain tumors is a crucialfactor for the survival of patients. This research provides a state-of-the-art approach to the early identification oftumors within the brain. We implemented the SegResNet architecture, a widely adopted architecture for three-dimensional segmentation, and trained it using the automatic multi-precision method. We incorporated the diceloss function and dice metric for evaluating the model. We got a dice score of 0.84. For the tumor core, we got adice score of 0.84; for the whole tumor, 0.90; and for the enhanced tumor, we got a score of 0.79.","PeriodicalId":231453,"journal":{"name":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijiam.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A brain tumor is a medical disorder faced by individuals of all demographics. Medically, it is described as the spreadof non-essential cells close to or throughout the brain. Symptoms of this ailment include headaches, seizures, andsensory changes. This research explores two main categories of brain tumors: benign and malignant. Benignspreads steadily, and malignant express growth makes it dangerous. Early identification of brain tumors is a crucialfactor for the survival of patients. This research provides a state-of-the-art approach to the early identification oftumors within the brain. We implemented the SegResNet architecture, a widely adopted architecture for three-dimensional segmentation, and trained it using the automatic multi-precision method. We incorporated the diceloss function and dice metric for evaluating the model. We got a dice score of 0.84. For the tumor core, we got adice score of 0.84; for the whole tumor, 0.90; and for the enhanced tumor, we got a score of 0.79.