IPA: improved phone modelling with recurrent neural networks

T. Robinson, M. Hochberg, S. Renals
{"title":"IPA: improved phone modelling with recurrent neural networks","authors":"T. Robinson, M. Hochberg, S. Renals","doi":"10.1109/ICASSP.1994.389361","DOIUrl":null,"url":null,"abstract":"This paper describes phone modelling improvements to the hybrid connectionist-hidden Markov model speech recognition system developed at Cambridge University. These improvements are applied to phone recognition from the TIMIT task and word recognition from the Wall Street Journal (WSJ) task. A recurrent net is used to map acoustic vectors to posterior probabilities of phone classes. The maximum likelihood phone or word string is then extracted using Markov models. The paper describes three improvements: connectionist model merging; explicit presentation of acoustic context; and improved duration modelling. The first is shown to provide a significant improvement in the TIMIT phone recognition rate and all three provide an improvement in the WSJ word recognition rate.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

This paper describes phone modelling improvements to the hybrid connectionist-hidden Markov model speech recognition system developed at Cambridge University. These improvements are applied to phone recognition from the TIMIT task and word recognition from the Wall Street Journal (WSJ) task. A recurrent net is used to map acoustic vectors to posterior probabilities of phone classes. The maximum likelihood phone or word string is then extracted using Markov models. The paper describes three improvements: connectionist model merging; explicit presentation of acoustic context; and improved duration modelling. The first is shown to provide a significant improvement in the TIMIT phone recognition rate and all three provide an improvement in the WSJ word recognition rate.<>
IPA:改进的手机模型与循环神经网络
本文描述了剑桥大学开发的混合连接主义者-隐藏马尔可夫模型语音识别系统的手机建模改进。这些改进应用于TIMIT任务中的电话识别和华尔街日报(WSJ)任务中的单词识别。使用循环网络将声向量映射到电话类的后验概率。然后使用马尔可夫模型提取最大似然电话或单词字符串。本文描述了三种改进:联结主义模型合并;声音语境的明确呈现;改进了持续时间模型。第一种方法可以显著提高TIMIT手机识别率,而这三种方法都可以提高WSJ的单词识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信