Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms

B. Trawinski, Magdalena Smetek, Zbigniew Telec, T. Lasota
{"title":"Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms","authors":"B. Trawinski, Magdalena Smetek, Zbigniew Telec, T. Lasota","doi":"10.2478/v10006-012-0064-z","DOIUrl":null,"url":null,"abstract":"In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the output of machine learning algorithms for regression problems does not satisfy normality requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple 1×N and N ×N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10006-012-0064-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the output of machine learning algorithms for regression problems does not satisfy normality requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple 1×N and N ×N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms.
在本文中,我们提出了一些非参数统计检验和事后程序的应用指南,用于执行机器学习算法的多重比较。我们强调有必要区分两两比较检验和多重比较检验。我们表明,两两Wilcoxon检验,当用于多个比较时,将导致过于乐观的结论。我们使用十种不同的测试进行了密集的正态性检查,表明机器学习算法对回归问题的输出不满足正态性要求。我们在29个基准回归数据集上对六种不同的神经回归算法进行了非参数统计测试和事后程序设计,用于多个1×N和N ×N比较。我们的研究证明了多种比较统计程序在分析和选择机器学习算法方面的有效性和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信