High Accuracy Handwritten Chinese Character Recognition Using Quadratic Classifiers with Discriminative Feature Extraction

Cheng-Lin Liu
{"title":"High Accuracy Handwritten Chinese Character Recognition Using Quadratic Classifiers with Discriminative Feature Extraction","authors":"Cheng-Lin Liu","doi":"10.1109/ICPR.2006.624","DOIUrl":null,"url":null,"abstract":"We aim to improve the accuracy of handwritten Chinese character recognition using two advanced techniques: discriminative feature extraction (DFE) and discriminative learning quadratic discriminant function (DLQDF). Both methods are based on the minimum classification error (MCE) training method of Juang et al. (1992), and we propose to accelerate the training process on large category set using hierarchical classification. Our experimental results on two large databases show that while the DFE improves the accuracy significantly, the DLQDF improves only slightly. Compared to the modified quadratic discriminant function (MQDF) with Fisher discriminant analysis, the error rates on two test sets were reduced by factors of 29.9% and 20.7%, respectively","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

We aim to improve the accuracy of handwritten Chinese character recognition using two advanced techniques: discriminative feature extraction (DFE) and discriminative learning quadratic discriminant function (DLQDF). Both methods are based on the minimum classification error (MCE) training method of Juang et al. (1992), and we propose to accelerate the training process on large category set using hierarchical classification. Our experimental results on two large databases show that while the DFE improves the accuracy significantly, the DLQDF improves only slightly. Compared to the modified quadratic discriminant function (MQDF) with Fisher discriminant analysis, the error rates on two test sets were reduced by factors of 29.9% and 20.7%, respectively
基于判别特征提取的二次分类器的高精度手写体汉字识别
本文采用判别特征提取(DFE)和判别学习二次判别函数(DLQDF)两种先进的技术来提高手写体汉字识别的准确率。这两种方法都是基于Juang等人(1992)的最小分类误差(MCE)训练方法,我们提出使用层次分类来加速大类别集的训练过程。我们在两个大型数据库上的实验结果表明,虽然DFE显著提高了精度,但DLQDF仅略微提高了精度。与Fisher判别分析的修正二次判别函数(MQDF)相比,两个测试集的错误率分别降低了29.9%和20.7%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信