Critically coupled algorithms for solving the power flow equation

P. Crouch, D. Tylavsky, H. Chen, L. Jarriel, R. Adapa
{"title":"Critically coupled algorithms for solving the power flow equation","authors":"P. Crouch, D. Tylavsky, H. Chen, L. Jarriel, R. Adapa","doi":"10.1109/PICA.1991.160620","DOIUrl":null,"url":null,"abstract":"Two new algorithms for solving the power flow equation are presented. The algorithms are modifications of the BX and XB algorithms, obtained by explicitly treating lines with high r/x ratios. An analytical justification of the algorithm is given together with test results comparing the performance of the new algorithms with that of the Newton algorithm, the constant Jacobian quasi-Newton algorithm and the BX and XB algorithms. The test results indicate that the new algorithms have greatly increased robustness properties over the BX and XB algorithms.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Two new algorithms for solving the power flow equation are presented. The algorithms are modifications of the BX and XB algorithms, obtained by explicitly treating lines with high r/x ratios. An analytical justification of the algorithm is given together with test results comparing the performance of the new algorithms with that of the Newton algorithm, the constant Jacobian quasi-Newton algorithm and the BX and XB algorithms. The test results indicate that the new algorithms have greatly increased robustness properties over the BX and XB algorithms.<>
求解潮流方程的临界耦合算法
提出了求解潮流方程的两种新算法。该算法是对BX和XB算法的修改,通过明确处理具有高r/x比率的线而获得。对该算法进行了分析论证,并与牛顿算法、常雅可比拟牛顿算法以及BX和XB算法的性能进行了比较。测试结果表明,与BX和XB算法相比,新算法的鲁棒性大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信