{"title":"Scheduling techniques for reducing leakage power in hard real-time systems","authors":"Yann-Hang Lee, K. P. Reddy, C. M. Krishna","doi":"10.1109/EMRTS.2003.1212733","DOIUrl":null,"url":null,"abstract":"Modern embedded systems are often severely resource-constrained. In current research, the reduction of dynamic power has been the focus. However, with increased chip speed and density in submicron scale, the static (leakage) power consumption has become an increasingly significant fraction of the total. Indeed, a five-fold increase in leakage power per technology generation has been observed. At this pace, leakage power could soon equal dynamic power. In this paper, we investigate scheduling policies to reduce leakage power in real-time systems. We show that with simple scheduling techniques, overall leakage energy can be reduced by an order of magnitude.","PeriodicalId":120694,"journal":{"name":"15th Euromicro Conference on Real-Time Systems, 2003. Proceedings.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Euromicro Conference on Real-Time Systems, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMRTS.2003.1212733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138
Abstract
Modern embedded systems are often severely resource-constrained. In current research, the reduction of dynamic power has been the focus. However, with increased chip speed and density in submicron scale, the static (leakage) power consumption has become an increasingly significant fraction of the total. Indeed, a five-fold increase in leakage power per technology generation has been observed. At this pace, leakage power could soon equal dynamic power. In this paper, we investigate scheduling policies to reduce leakage power in real-time systems. We show that with simple scheduling techniques, overall leakage energy can be reduced by an order of magnitude.