Malware Visualization Based on Deep Learning

Zhuojun Ren, Ting Bai
{"title":"Malware Visualization Based on Deep Learning","authors":"Zhuojun Ren, Ting Bai","doi":"10.1109/CISP-BMEI53629.2021.9624362","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new visualization analysis method based on the binary sequence of malware. The method uses SFCs (space filling curves) to visualize malware files and differentiates the displayable characters from non-displayable ones by different colors. This method resolves the problems that other methods cannot orient characters and shield analysis system from the ZipBomb attack risk aroused by huge malware. We randomly selected 7162 Kaspersky malware files and used the deep fusion networks to extract image signatures. Experiments obtained classification accuracy 98.24% and detection accuracy 99.02%.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new visualization analysis method based on the binary sequence of malware. The method uses SFCs (space filling curves) to visualize malware files and differentiates the displayable characters from non-displayable ones by different colors. This method resolves the problems that other methods cannot orient characters and shield analysis system from the ZipBomb attack risk aroused by huge malware. We randomly selected 7162 Kaspersky malware files and used the deep fusion networks to extract image signatures. Experiments obtained classification accuracy 98.24% and detection accuracy 99.02%.
基于深度学习的恶意软件可视化
本文提出了一种基于恶意软件二进制序列的可视化分析方法。该方法利用sfc(空格填充曲线)可视化恶意软件文件,并通过不同颜色区分可显示字符和不可显示字符。该方法解决了其他方法无法对字符进行定向的问题,并使分析系统免受大型恶意软件ZipBomb攻击风险的影响。我们随机选择7162个卡巴斯基恶意软件文件,并使用深度融合网络提取图像签名。实验得到分类准确率98.24%,检测准确率99.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信